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Chapter 1

Complex vector bundles

The aim of this chapter is to introduce the main objects we are going to study:
complex vector bundles. These are complex vector spaces parametrized by
topological spaces. We will therefore discuss first topological spaces and
continuous maps between them. The notion of compactness and a homotopy
relation are going to be also presented. The definition of a vector bundle is
the subject of the last part of this chapter.

1.1 Topological spaces and continuous maps

1.1.1 Definition. A topological space is a set X together with a collection
T of subsets of X which satisfies the following properties:

(1) X and ∅ belong to T .

(2) If U and V belong to T , then so does the intersection U ∩ V .

(3) If, for s ∈ S, Us belong to T , then so does the union
⋃
s∈S Us.

Let (X, T ) be a topological space. The collection T is called the topology
of X and the members of T are called open subsets of X. A topological
space (X, T ) will be often denoted simply by X, in which case the collection
of open subsets T is assumed to be known. A subset D ⊂ X is called closed
if the complement X \D is open.

1.1.2 Excercise. Let (X, T ) be a topological space. Show that:

(1) X and ∅ are closed subset of X.

(2) If D and E are closed subset of X, then so is D ∪ E.

(3) If, for s ∈ S, Ds is closed in X, then so is ∩s∈SDs.

2



1.1.3 Example. Let X be the set consisting of just one point. Such a set has
a unique topology consisting of all the subsets of X. This topological space
is denoted by ∆0 or D0 or R0 and is called the point.

1.1.4 Definition. Let X and Y be topological spaces. A function f : X −→
Y is called continuous if, for any open subset V ⊂ Y , the pre-image f−1(V ) =
{x ∈ X | f(x) ∈ V } is open in X.

We will often use the term map for a continuous function between topo-
logical spaces. Thus any map is a function, but not all functions are maps,
only those that are continuous. This notion of continuity is essential for
understanding topological spaces. Maps will be used to compare spaces.

1.1.5 Excercise. Show that a function f : X −→ Y is continuous if and only
if, for any closed subset D ⊂ Y , the pre-image f−1(D) = {x ∈ X | f(x) ∈ D}
is closed in X.

1.1.6 Excercise. Let f : X −→ Y and g : Y −→ Z be continuous functions
between topological spaces. Show that the composition gf : X −→ Z is also
continuous.

1.1.7 Definition. A continuous function f : X −→ Y is called an isomor-
phism if there is a continuous function g : Y → X such that fg = idY and
gf = idX . Two spaces X and Y are said to be isomorphic if there is an
isomorphism f : X −→ Y .

Note that an isomorphism of topological spaces is a one to one and onto
function (such functions are also called bijections), as it has an inverse func-
tion. However even if a continuous function is a bijection (one to one and
onto), so it has an inverse, the inverse may fail to be continuous. Thus to
be an isomorphism it is not enough to be a continuous bijection. To be
an isomorphism, in addition to having the inverse, this inverse has to be
continuous.

1.1.8 Excercise. Let S be a set containing at least two distinct elements.
Consider the following two collections of subsets of S: T = {∅, S} and D =
{all subsets of S}. Show that (S, T ) and (S,D) are topological spaces. Prove
that id : S −→ S is a continuous function between (S,D) and (S, T ), but
it is not a continuous function between (S, T ) and (S,D). Conclude that
id : S −→ S is not an isomorphism between (S,D) and (S, T ). Are (S,D)
and (S, T ) isomorphic?
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Constructing new spaces

1.2 Subspaces

Let X be a topological space and Y ⊂ X be a subset. Define U to be the
collection of subsets of Y which consist of intersections Y ∩U where U is an
open subset in X. We call the collection U the subspace topology on Y .

1.2.1 Excercise. Let X be a topological space and Y ⊂ X be a subset. Show
that Y with the subspace topology is a topological space.

1.2.2 Excercise. Let X be a topological space and Z ⊂ Y ⊂ X be subsets.
Consider Y as a topological subspace of X. The set Z can be then considered
as a subspace of Y and a subspace of X. Show that these two subspace
topologies on Z are the same.

We will often use the above exercises to construct new topological spaces.
We will define first an ”ambient” topological space and then consider its
subspaces as the new topological spaces.

1.2.3 Excercise. Let Y and X be topological spaces and Z ⊂ X be a topo-
logical subspace. Show that the inclusion i : Z ⊂ X is continuous. Show
also that a function f : Y −→ Z is continuous if and only if the composition
if : Y −→ X is continuous.

1.3 Disjoint unions

Let X and Y be topological spaces. Consider the disjoint union X
∐
Y and

the collection U of subsets U ⊂ X
∐
Y such that U ∩ X is open in X and

U ∩ Y is open in Y . We call the collection U the disjoint union topology on
X

∐
Y .

More generally, for a collection of topological spaces {Xi}i∈I , consider the
disjoint union

∐
i∈I Xi and the collection U of subsets U ⊂

∐
i∈I Xi such that

U ∩ Xi is open for any i ∈ I. We call the collection U the disjoint union
topology on

∐
i∈I Xi.

1.3.1 Excercise. Let Y and X be topological spaces. Show X
∐
Y , with the

disjoint union topology, is a topological space.

1.3.2 Excercise. Let X,Y , and Z be topological spaces. Show that a function
f : X

∐
Y −→ Z is continuous if and only if the compositions of f and the

inclusions in1 : X ⊂ X
∐
Y and in2 : Y ⊂ X

∐
Y are both continuous.

1.3.3 Excercise. A space of the form
∐

I ∆0 is called discreet. Show that any
subset of a discreet space is open. Show that any function out of a discreet
space is continuous. Show that any function into ∆0 is continuous.
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1.4 Products

Let X and Y be topological spaces. Consider the product X × Y and the
collection U of subsets U ⊂ X × Y such that, for any point (x, y) ∈ U , there
are open subsets x ∈ U1 ⊂ X and y ∈ U2 ⊂ Y such that U1 × U2 ⊂ U . We
call the collection U the product topology on X × Y .

1.4.1 Excercise. Let X and Y be topological spaces. Show X × Y with the
product topology is a topological space.

1.4.2 Excercise. Let X, Y , and Z be topological spaces. Show that a function
f : Z → X × Y is continuous if and only if the compositions of f with
projections pr1 : X × Y −→ X and pr2 : X × Y −→ Y are both continuous.

1.5 Pull-backs

Let f : A −→ X and g : B −→ X be continuous maps between topological
spaces. The subset {(a, b) ∈ A×B | f(a) = g(b)} ⊂ A×B, with the subspace
topology, is called the pull-back of f and g. The pull-back is often denoted
by A×X B in which case we assume that the maps f and g are given.

1.5.1 Excercise. Let f : A −→ X and g : B −→ X be continuous maps.

(1) Show that the functions πA : A ×X B −→ A and πB : A ×X B −→ B
which assign to (a, b) the elements a and b, respectively, are continuous.

(2) Let f : A −→ X and g : B −→ X be continuous maps between
topological spaces. Show that for any two continuos maps α : P −→ A
and β : P −→ B for which fα = gβ, there is a unique continuous map
µ : P −→ A×XB for which πAµ = α and πBµ = β.

(3) Show that the maps above fit into a commutative diagram:

P

µ
HHH

HH

$$HH
HH

β

  

α

''

A×X B
πB //

πA

��

B

g

��
A

f // X

We will sometime denote the pull-back of f : A −→ X and g : B −→ X
as f ∗B and the map πA : A×X B −→ B as f ∗g : f ∗B −→ B.
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1.6 Quotients

Let X be a topological space, Y a set, and f : X −→ Y a function of sets.
The function f can be used to define a topology on Y . Let U be the collection
of subset U ⊂ Y for which f−1(U) is open in X. The collection U is called
the quotient topology on Y induced by f . We will also call Y , with the
quotient topology, a quotient space of X.

1.6.1 Excercise. Let X be a topological space. Show that Y with the quotient
topology induced by f : X −→ Y is a topological space and the function
f : X −→ Y is continuous.

An important property of a quotient space is that it is easy to verify if a
function from such a space is continuous:

1.6.2 Proposition. Let Y be the topological space given by the quotient
topology induced by f : X −→ Y . A function g : Y → Z is continuous if and
only if the composition gf : X −→ Z is continuous.

Proof. Composition of continuous functions is continuous (Exercise 1.1.6).
Thus if g is continuous, then so is gf . This shows one implication.

Assume now that gf is continuous. We need to show that g is continuous.
Let U ⊂ Z be an open subset. As gf is continuous, the subset f−1(g−1(U))
is open in X. By definition of the quotient topology, g−1(U) is then open in
Y and we can conclude that g is also continuous.

1.7 Euclidean spaces

For n > 0, let Rn be the set of n-tuples of real numbers. If n = 0, we define
R0 to be the one point set {0}. Recall that |x| =

√
x21 + · · ·x2n, if n > 0 and

|0| = 0 if n = 0. Let a ∈ Rn and r ∈ R. The following subsets in Rn are
called respectively the sphere, the disc, and the open ball with center in a
and radius r:

S(a, r) = {x ∈ Rn | |x− a| = r}

D(a, r) = {x ∈ Rn | |x− a| ≤ r}

B(a, r) = {x ∈ Rn | |x− a| < r}

We can now define a topology on Rn. A subset U ⊂ Rn is called open if,
for any point a ∈ U , there is a number ε > 0, such that the open ball B(a, ε)
is included entirely in U . The collection of such open subsets of Rn is called
the Euclidean topology and Rn, with this choice of open subsets, is called
the n-dimensional Euclidean space. We will not consider any other topology
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on Rn. From now on the symbol Rn denotes the n-dimensional Euclidean
space.

1.7.1 Excercise. Show that Rn with the above choice of open subsets is a
Hausdorff topological space.

1.7.2 Excercise. Show that the product of Euclidean topologies on Rn×Rm

is the same as the Euclidean topology on Rn+m.

1.7.3 Excercise. Consider Rn as a subset of Rn+m consisting of n+m-tuples
of real numbers whose last m-coordinates are 0. Show that the Euclidean
topology on Rn is the same as the subspace topology of the Euclidean topol-
ogy on Rn+m.

We can now use the Euclidean space Rn to consider its subspaces. In this
way we can get a lot of new examples of topological spaces. Here are some
of the ones we will often use:

n–dimensional disc: Dn := {x ∈ Rn | |x| ≤ 1}

n–dimensional open disc: Bn := {x ∈ Rn | |x| < 1}

(n− 1)–dimensional sphere: Sn−1 := {x ∈ Rn | |x| = 1}

unit interval: I := {x ∈ R | 0 ≤ x ≤ 1}

n–dimensional simplex: ∆n := {x ∈ Rn+1 | x0 + · · ·+ xn = 1}

For example D0 = R0 = ∆0 is the one point space. The space S0 ⊂ R
consists of two points {−1, 1} and it is then isomorphic to the disjoint union
D0

∐
D0.

Let 0 ≤ i ≤ n. A point in ∆n whose all coordinates are 0 except the i-th
coordinate, which has to be 1, is called the i-th vertex of ∆n and is denoted
by vi.

1.7.4 Excercise. Let X ⊂ Rn and Y ⊂ Rm are subspaces. Show that a
function f : X −→ Y is continuous if and only if, for any a ∈ X and any
ε > 0, there is δ > 0 such that, when |x− a| < δ, then |f(x)− f(a)| < ε.

1.7.5 Excercise. Show that, for any a ∈ Rn and any r > 0, the spaces Rn

and B(a, r) are isomorphic.

1.7.6 Excercise. Show that, for any a, b ∈ Rn and any r, s > 0, the spaces
D(a, r) and D(b, s) are isomorphic.

1.7.7 Excercise. Show that Dn and ∆n are isomorphic spaces.
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1.8 Complex vector spaces

For n > 0, let Cn be the set of n-tuples of complex numbers. If n = 0, we
define C0 to be the one point set {0}. Recall that for a complex number
z = a + ib, z = a − ib and |z| =

√
a2 + b2 =

√
zz. Recall also that, for

z ∈ Cn, |z| =
√
z1z1 + · · · znzn, if n > 0 and |0| = 0 if n = 0.

We can define a topology on Cn. A subset U ⊂ Cn is called open if, for
any point a ∈ U , there is a number ε > 0, such that {z ∈ Cn | |z − a| < ε}
is included entirely in U . We will not consider any other topology on Cn.

1.8.1 Excercise. Show that Cn and R2n are isomorphic topological spaces.

Let V be an n-dimensional C-vector space. There is a C-linear isomor-
phism φ : Cn −→ V . We can use this linear isomorphism to define a topology
on V . We say that a subset U ⊂ V is open if φ(U) is open in Cn.

1.8.2 Excercise. Let V be an n-dimensional C-vector space and φ : Cn −→ V
and ψ : Cn −→ V be C-linear isomorphisms. Show that the topology on V
induced by φ is the same as the topology induced by ψ.

Using the above exercise we can conclude that any finite dimensional C-
vector space has a natural topology. This is the only topology we are going
to consider on such vector spaces.

1.9 Compact spaces

The aim of this section is to introduce an important class of topological
spaces: compact spaces. Their key properties are: continuous bijections
between them are isomorphisms and they admit a lot of continuous maps
into an interval. We start with:

1.9.1 Definition.

(1) A topological space X is called Hausdorff if, for any two distinct paints
x1, x2 ∈ X, there are open subsets x1 ∈ U1 ⊂ X and x2 ∈ U2 ⊂ X
whose intersection U1 ∩ U2 is empty.

(2) A topological space X is compact if it is Hausdorff and, for any col-
lection of open subsets {Ui ⊂ X}i∈I for which

⋃
i∈I Ui = X, there is a

finite sequence i1, i2, . . . , ik such that:

Ui1 ∪ Ui2 ∪ · · · ∪ Uik = X

The collection of open subsets {Ui ⊂ X}i∈I such that
⋃
i∈I Ui = X is

called an open cover, or simply a cover, of X. A space X is compact if it is
Hausdorff and any cover of X has a finite subcover.
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1.9.2 Excercise. Let X and Y be spaces. The disjoint union X
∐
Y is com-

pact if and only if both X and Y are compact.

1.9.3 Excercise. Let {Xi}i∈I be a collection of compact spaces. Show that∐
i∈I Xi is compact if and only if I is a finite set.

1.9.4 Excercise. Let X and Y be spaces. The product X × Y is compact if
and only if both X and Y are compact.

1.9.5 Theorem. A subspace X of the Euclidean space Rn is compact if and
only if, as a subset of Rn, it is closed and bounded (it lies in a ball B(a, r)
for some r).

It follows from the above theorem that Sn−1, Dn, and ∆n are compact
spaces.

Here are some fundamental properties of compact spaces:

1.9.6 Proposition.

(1) Let X be a Hausdorff space. If a subspace Y ⊂ X is compact, then it
is a closed subset of X.

(2) Let X be a compact space. A subspace Y ⊂ X is compact if and only
if it is closed.

Proof. (1): We need to show that X \ Y is open. For that it is enough to
prove that, for any point x 6∈ Y , there is an open set x ∈ U ⊂ X such that
the intersection U ∩Y is empty. Since X is Hausdorff, for any y ∈ Y , we can
find two open subsets x ∈ Uy ⊂ X and y ∈ Vy ⊂ X such that Uy ∩ Vy = ∅.
It is then clear that Y ⊂

⋃
y∈Y Vy. Since Y is compact, we can then find

finitely many points y1, . . . , yn, such that Y ⊂ Vy1 ∪ · · · ∪Vyn . It then follows
that an open subset U = Uy1 ∩ · · · ∩ Uyn has empty intersection with Y .
(2): If Y is compact then it is closed by statement (1).

Let Y be a closed subset of X and Y =
⋃
i∈I(Ui ∩ Y ), where Ui is open

in X. Then X = (X \ Y ) ∪
⋃
i∈I Ui. Since X is compact we can find then a

finite sequence i1, i2, . . . , ik such that:

X = (X \ Y ) ∪ Ui1 ∪ Ui2 ∪ · · · ∪ Uik

It then follows that Y = (Ui1 ∩ Y ) ∪ (Ui2 ∩ Y ) ∪ · · · ∪ (Uik ∩ Y ). To show
that Y is compact, it remains to show that it is Hausdorff. Let y1 and y2 be
two distinct points in Y . Since X is Hausdorff, there are two open subsets
y1 ∈ U1 ⊂ X and y2 ∈ U2 ⊂ X whose intersection U1 ∩ U2 is empty. It then
follows that the intersection of U1 ∩ Y and U2 ∩ Y is also empty and Y is
Hausdorff.
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An important property of compactness is that it is preserved by contin-
uous functions:

1.9.7 Proposition.

(1) Let f : X −→ Y be a continuous function and Y a Hausdorff space. If
D ⊂ X is compact, then f(D) is compact and closed in Y .

(2) Assume that X is compact and Y Hausdorff. If f : X −→ Y is a map
which is an onto function, then Y is also compact.

(3) Assume that X is compact and Y is Hausdorff. If f : X −→ Y is a
continuos bijection (one to one and onto), then f is an isomorphism.

Proof. (1): Since Y is Hausdorff, then so is f(D). Let f(D) ⊂
⋃
i∈I Ui.

Since D is compact and D ⊂
⋃
i∈I f

−1(Ui), there is a finite sequence i1, . . . , ik
such that:

D ⊂ f−1(Ui1) ∪ f−1(Ui2) ∪ · · · ∪ f−1(Uik)

Consequently f(D) ⊂ Ui1 ∪ Ui2 ∪ · · · ∪ Uik . We can conclude that f(D) is
compact. By Proposition 1.9.6.(1), f(D) is also closed in Y , as Y is assumed
to be Hausdorff.

(2): This is a consequence of statement (1).

(3): Since f is a bijection, there is an inverse function g : Y −→ X, such that
fg = idY and gf = idX . We need to show that g is continuous. According
to Exercise 1.1.5 it is enough to prove that g−1(D) is closed in Y , for any
closed subset D ⊂ X. Note however that g−1(D) = f(D). Thus we need
to show that f(D) is closed. This follows from the following sequence of
implications. Since D is closed and X is compact, D is also compact by
Proposition 1.9.6.(2). As Y is Hausdorff, f(D) is then compact by statement
(1). We can then use again Proposition 1.9.6.(1) to conclude that f(D) is
closed.

According to statement (3) of the above proposition, to show that com-
pact spaces X and Y are isomorphic, it is enough to construct a continuous
bijection f : X −→ Y . The inverse of f would be then necessarily continu-
ous. This is one of the key advantages of compact spaces and we will use it
often. Another property of compact spaces often used is:

1.9.8 Proposition. Let X be a Hausdorff space and Y ⊂ X and Z ⊂ X be
two disjoint (Y ∩ Z = ∅) subspaces which are compact. Then there are open
sets Y ⊂ U ⊂ X and Z ⊂ V ⊂ X such that U ∩ V = ∅.

10



Proof. Let us fix a point y ∈ Y . For any z ∈ Z let us choose open subsets
y ∈ Uy,z ⊂ X and z ∈ Vy,z ⊂ X such that Uy,z ∩ Vy,z = ∅. This can be done
since X is Hausdorff. Clearly Z ⊂

⋃
z∈Z Vy,z. Since Z is compact, there is a

finite sequence z1, z2, . . . , zk such that:

Z ⊂ Vy,z1 ∪ Vy,z2 ∪ · · · ∪ Vy,zk

Define Uy := Uy,z1 ∩ Yy,z2 ∩ · · · ∩ Uy,zk and Vy := Vy,z1 ∪ Vy,z2 ∪ · · · ∪ Vy,zk .
Then Uy and Vy are disjoint open subsets of X such that y ∈ Uy and Z ⊂ Vy.
Consider such subsets for all y ∈ Y . It is clear that Y ⊂

⋃
y∈Y Uy. Since Y

is compact, there is a finite sequence y1, y2, . . . , yn such that:

Y ⊂ Uy1 ∪ Uy2 ∪ · · · ∪ Uyk

Define U := Uy1 ∪Uy2 ∪ · · · ∪Uyk and V := Vy1 ∩ Vy2 ∩ · · · ∩ Vyk . The subsets
U and V satisfy the requirements of the propositions.

1.9.9 Theorem. Let X be a compact space.

(1) If A ⊂ X, B ⊂ X be non empty closed subsets, then there is a contin-
uous function f : X −→ I such that f(A) = 0 and f(B) = 1.

(2) If A ⊂ X is a closed subset, then for any continuous function f : A −→
Cn, there is a continuous function g : X −→ Cn such that g(a) = f(a)
for any a ∈ A.

(3) If {Ui ⊂ X}1≤i≤n is an open covering of X, then there are functions
{fi : X −→ I}1≤i≤n such that:

(a) fi(x) = 0, if x 6∈ Ui
(b) Σn

i=1fi(x) = 1 for any x ∈ X.
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