
Lecture 2

1.10 Cell attachments

Let X be a topological space and α : S
n−1 −→ X be a map. Consider the

space X
�

D
n with the disjoint union topology. Consider further the set

X
�

B
n and a function f : X

�
D

n −→ X
�

B
n given by:

f(x) =

�
x if x ∈ X

�
B

n

α(x) if x ∈ S
n−1 ⊂ D

n

The topological space consisting of the set X
�

B
n together with the quotient

topology given by f is denoted by X ∪α D
n. We say that X ∪α D

n is con-
structed out of X by attaching n-dimensional cell D

n along α : S
n−1 −→ X.

1.10.1 Excercise. Let α : S
n−1 −→ X be a map. Show that the composition

of the quotient map f : X
�

D
n −→ X ∪α D

n and the inclusion X
�

B
n ⊂

X
�

D
n, induced by the identity id : X −→ X and the inclusion B

n ⊂ D
n,

is a continuous bijection. Is it an isomorphism?

1.10.2 Proposition. If X is Hausdorff, then so is X ∪α D
n
, for any map

α : S
n−1 → X.

Proof. Let y1 and y2 be two distinct points in X ∪α D
n. There are 3 cases.

First y1 and y2 are in X. Since X is Hausdorff, then there are two disjoint
open subsets y1 ∈ U1 ⊂ X and y2 ∈ U2 ⊂ X. The subsets α

−1(U1) and
α
−1(U2) are open in S

n−1. Define:

Vi := {x ∈ D
n | |x| > 1/2 and x/|x| ∈ α

−1(Ui)} ⊂ D
n

Note that V1 and V2 are open and disjoint subsets of D
n. Finally set Wi :=

Ui ∪ (Vi \α
−1(Ui) ⊂ X

�
B

n. Note that f
−1(Wi) = Ui ∪Vi ⊂ X

�
D

n. Thus
Wi is open in X ∪α D

n. The subsets W1 and W2 are also disjoint and contain
respectively y1 and y2.

Let y1 ∈ X and y2 ∈ B
n. Define W1 := X ∪ {x ∈ B

n | |x| > (1 + |y2|)/2}
and W2 := {x ∈ B

n | |x| < (1 + |y2|)/2}. Note that f
−1(W1) = X ∪ {x ∈

D
n | |x| > (1 + |y2|)/2} and f

−1(W2) = {x ∈ D
n | |x| < (1 + |y2|)/2}. These

are open subsets. The sets Wi are then also open. They are disjoint and
contain respectively y1 and y2.

Let y1 and y2 be two distinct points in B
n. Since B

n is Hausdorff, there
are open disjoint subsets y1 ∈ W1 ⊂ B

n and y2 ∈ W2 ⊂ B
n. The subset Wi

is also open in Y .
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1.10.3 Proposition. If X is compact, then so is X ∪α D
n
, for any map

α : S
n−1 → X.

Proof. By previous proposition X ∪α D
n is Hausdorff. Since X

�
D

n is com-
pact, according to Proposition 1.9.7.(2), the space X ∪α D

n, as the image of
f : X

�
D

n −→ X ∪α D
n, is also compact.

1.10.4 Example. Consider the one point space D
0. Let α : S

n−1 −→ D
0 be

the unique map. The space D
0 ∪α D

n is isomorphic to S
n. To construct the

isomorphism consider a function g : D
0
�

B
n −→ S

n defined as follows:

g(x) =






(0, · · · , 0,−1) if x ∈ D
0

(2
�

1−|x|
|x| x, 1− 2|x|) if x ∈ B

n \ {(0, · · · , 0)}
(0, · · · , 0, 1) if x = (0, · · · , 0) ∈ B

n

We claim that g is a bijection and that the composition of the quotient
function f : D

0
�

D
n −→ D

0
�

B
n and g is a continuous function gf :

D
0
�

D
n −→ S

n. To see this we need to show that the restriction of gf

to the components D
0 and D

n are continuous. This is true for the first
restriction since all functions out of D

0 are continuous. The other restriction
is given by the formula:

D
n � x �→

�
(2

�
1−|x|

|x| x, 1− 2|x|) ∈ S
n if x ∈ D

n \ {(0, · · · , 0)}
(0, · · · , 0, 1) ∈ S

n if x = (0, · · · , 0) ∈ D
n

whose continuity can be checked using 1.7.4. Thus the function g defines a
continuous map, denoted by the same symbol, g : D

0 ∪α D
n −→ S

n. As
both spaces D

0 ∪α D
n and S

n are compact, this map g must be then an
isomorphism.

1.11 Real projective spaces

Consider the Euclidean space R
n+1 (n ≥ 0). The symbol RP

n denotes the
set of 1-dimensional R-vector subspaces of R

n+1. Such subspaces are also
called lines in R

n+1. For example since R is 1-dimensional R-vector space,
it has only one 1-dimensional R-vector subspace, and hence RP

0 is just a
point.

Define π : S
n −→ RP

n to be the function that assigns to a vector v ∈
S

n ⊂ R
n+1 the R-linear subspace generated by v. Explicitly π(v) := {rv | r ∈

R}.
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1.11.1 Definition. The set RP
n

together with the quotient topology induced

by π : S
n −→ RP

n
is called the n-dimensional real projective space.

In the rest of this section we will identify the projective spaces as spaces
build by attaching cells. For that we need:

1.11.2 Proposition. RP
n

is a compact space.

Proof. Since S
n is compact, according to Proposition 1.9.7.(2), to show that

RP
n is compact it is enough to prove that it is Hausdorff. Let L1 and

L2 be two distinct points in RP
n, i.e., two distinct 1-dimensional R-linear

subspaces in R
n+1. Let v1 and v2 be two points in S

n which generate the
lines L1 and L2 respectively. Let r = min{|v1 − v2|, |v1 + v2|}. Define U1 to
be the subset of PR

n of all the lines which are generated by vectors v such
that min{|v1 − v|, |v1 + v|} < r/2. Define U2 to be subset of RP

n of all the
lines which are generated by vectors v such that min{|v2−v|, |v2 +v|} < r/2.
It is clear that the subsets U1 and U2 are disjoint and L1 ∈ U1 and L2 ∈ U2.
We claim that these sets are also open. Note that:

π
−1(Ui) = {w ∈ S

n | |vi − w| < r/2} ∪ {w ∈ S
n | |vi + w| < r/2}

Since it is an open subset in S
n, Ui is open in RP

n.

We can use the map π : S
n −→ RP

n to attach a cell and build a new
topological space RP

n ∪π D
n+1.

1.11.3 Proposition. The space RP
n ∪π D

n+1
is isomorphic to RP

n+1
.

Proof. Since both spaces RP
n ∪π D

n+1 and RP
n+1 are compact, to show

that they are isomorphic we need to construct a continuous bijection between
them. Let us denote by e : Rn+1 −→ R

n+2, respectively e : S
n −→ S

n+1, the
functions which assigns to an element x ∈ R

n+1 the element (x, 0) ∈ R
n+2.

Note that both of these functions are continuous. Define i : RP
n −→ RP

n+1

to be a function that assigns to a line L ⊂ R
n+1, the line in e(L) ⊂ R

n+2.
Note that there is a commutative diagram:

S
n

π

��

e ��
S

n+1

π
��

RP
n i ��

RP
n+1

Since the composition iπ = πe is continuous, then i is also continuous. The
map i : RP

n −→ RP
n+1 is called the standard inclusion.
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Define a function g : RP
n �

B
n+1 → RP

n+1 as follows:

g(x) =

�
i(x) if x ∈ RP

n

the line generated by (x,
�

1− |x|2) ∈ R
n+2 if x ∈ B

n+1

Note that the composition of the function g with the quotient map f :
RP

n �
D

n+1 −→ RP
n ∪π D

n+1 is continuous. Thus g defines a continu-
ous map g : RP

n ∪π D
n+1 −→ RP

n+1. Note that this map is a bijection.
Since the spaces are compact we can conclude that this map is an isomor-
phism.

1.11.4 Example. Let n = 0. In this case RP
0 is just a point and as a

topological space it is isomorphic to D
0. Thus there is only one map π :

S
0 −→ RP

0. The space RP
1 is then isomorphic to D

0 ∪π D
1, which by

Example 1.10.4, is isomorphic to S
1. It follows then that RP

1 is isomorphic
to S

1. We would like to identify the map π : S
1 −→ RP

1 = S
1. Note that

this map sands the elements x and −x to the same point. If we think about
S

1 as a subset of the complex numbers C of length 1, then the multiplication
map S

1 � z �→ z
2 ∈ S

1 also sends x and −x to the same point. One can
then check directly that the map π : S

1 −→ RP
1 = S

1 is given by this
multiplication map.

1.12 Complex projective spaces

Consider the complex vector space C
n+1 (n ≥ 0). The symbol CP

n denotes
the set of 1-dimensional C-vector subspaces of C

n+1. Such subspaces are also
called complex lines in C

n+1. For example since C is 1-dimensional C-vector
space, it has only one 1-dimensional C-vector subspace, and hence CP

0 is
just a point.

Note that the subspace {z ∈ C
n+1 | |z| = 1} is isomorphic to S

2n+1.
Define π : S

2n+1 −→ CP
n to be the function that assigns to a vector z

the 1-dimensional C vector subspace of C
n+1 generated by z. Explicitly

π(z) = {sz | s ∈ C}.

1.12.1 Definition. The set CP
n
, together with the quotient topology induced

by π : S
2n+1 −→ CP

n
, is called the n-dimensional complex projective space.

In the rest of this section we will identify the complex projective spaces
as spaces build by attaching cells.

1.12.2 Proposition. (1) CP
n

is a compact space.
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(2) The space CP
n ∪π D

2n+2
is isomorphic to CP

n+1
.

Proof. (1): Since S
2n+1 is compact, according to Proposition 1.9.7.(2), to

show that CP
n is compact it is enough to prove that it is Hausdorff. Let

L1 and L2 be two distinct points in CP
n, i.e., two distinct 1-dimensional C-

linear subspaces in C
n+1. Let z and y be two points in S

2n+1 which generate
the lines L1 and L2 respectively. Let R = min{|sz − ty| |s, t ∈ S

1 ⊂ C}.
Note that because S

1 is compact, R > 0. Define V and U to be the following
open subsets of S

2n+1:

V := {x ∈ S
2n+1 | |x− z| < R/2} U := {x ∈ S

2n+1 | |x− y| < R/2}

Since for any s ∈ S
1 ⊂ C, sV = V and sU = U , we have equalities:

π
−1

π(V ) = V π
−1

π(U) = U

Thus the subsets π(V ) and π(U) are open in CP
n. As they do not intersect

and contain respectively L1 and L2, we can conclude that CP
n is Hausdorff.

(2): Since both spaces CP
n ∪π D

2n+2 and CP
n+1 are compact, to show

that they are isomorphic we need to construct a continuous bijection between
them. Let us denote by e : Cn+1 −→ C

n+2, respectively e : S
2n+1 −→ S

2n+3,
the functions which assigns to an element z ∈ C

n+1 the element (z, 0) ∈ C
n+2.

Note that both of these functions are continuous. Define i : CP
n −→ CP

n+1

to be a function that assigns to a line L ⊂ C
n+1, the line in e(L) ⊂ C

n+2.
Note that there is a commutative diagram:

S
2n+1

π

��

e ��
S

2n+3

π
��

CP
n i ��

CP
n+1

Since the composition iπ = πe is continuous, then i is also continuous. The
map i : CP

n −→ CP
n+1 is called the standard inclusion.

Define a function g : CP
n �

B
2n+2 → CP

n+1 as follows:

g(z) =

�
i(z) if z ∈ CP

n

the line generated by (z, 1) ∈ C
n+2 if z ∈ B

2n+2 ⊂ C
n+1

Note that the composition of the function g with the quotient map f :
CP

n �
D

2n+2 −→ CP
n ∪π D

2n+2 is continuous. Thus g defines a contin-
uous map g : CP

n ∪π D
2n+2 −→ CP

n+1. Note that this map is a bijection.
Since the spaces are compact we can conclude that this map is an isomor-
phism.
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1.12.3 Excercise. Let 1 ≤ i ≤ n + 1. Define Ui ⊂ CP
n to be the image of

{z ∈ S
2n+1 | zi �= 0} via π. Show that Ui is an open subset of CP

n. Show
further that the function that assigns to an element z ∈ C

n, the line in C
n+1

generated by (z1, · · · , zi−1, 1, zi, · · · zn), is an isomorphism between C
n and

Ui.

1.12.4 Example. Let n = 0. In this case CP
0 is just a point and as a

topological space it is isomorphic to D
0. Thus there is only one map π :

S
1 −→ CP

0. The space CP
1 is then isomorphic to D

0 ∪π D
2, which by

Example 1.10.4, is isomorphic to S
2. It follows then that CP

1 is isomorphic
to S

2.

1.13 Tautological line bundles

Let us choose n ≥ 0. Consider the following subspace of the product CP
n×

C
n+1:

E := {(L, z) ∈ CP
n ×C

n+1 | z ∈ L}

1.13.1 Definition. The composition E ⊂ CP
n × C

n+1 prCPn−−−→ CP
n

is de-

noted by λn and called the tautological line bundle.

Note that for any point L ∈ CP
n, the preimage (λn)−1(L) is can be

identified with the line L ⊂ C
n+1. In this way (λn)−1(L) becomes a 1-

dimensional C vector space. Furthermore, consider the open subset Ui ⊂
CP

n (see 1.12.3) and the following maps:

(λn)−1(Ui)� �

��

� � ��

φi

��
Ui ×C

n+1
� �

��

id×pri �� �� Ui ×C� �

��
E

� � ��
CP

n ×C
n+1

id×pri �� �� CP
n ×C

1.13.2 Proposition. For any i, the map φi : (λn)−1(Ui) −→ Ui × C is an

isomorphism.

1.13.3 Excercise. Prove the above proposition.

1.14 Homotopy relation

Recall that I denotes the unit interval [0, 1] ⊂ R. We are going to use it to
define a relation on continuous maps with the same domain and range:

17



1.14.1 Definition. A map f : X −→ Y is homotopic to g : X −→ Y if

there is a map S : X × I −→ Y such that, for any x ∈ X, S(x, 0) = f(x)
and S(x, 1) = g(x). Any such map S is called a homotopy between f and g.

Homotopy is an equivalence relation on the set of continuous maps be-
tween X and Y and is preserved by compositions:

1.14.2 Proposition. (1) If f : X −→ Y is homotopic to g : X −→ Y

then g is homotopic to f (symmetry of the homotopy relation).

(2) If f : X −→ Y is homotopic to g : X −→ Y and g : X −→ Y is

homotopic to h : X −→ Y , then f is homotopic to h (transitivity of

the homotopy relation).

(3) If f : X −→ Y and g : X −→ Y are homotopic, then, for any h :
Y −→ Z, so are the compositions hf : X −→ Z and hg : X −→ Z.

(4) If f : X −→ Y and g : X −→ Y are homotopic, then, for any h :
Z −→ X, so are the compositions fh : Z −→ Y and gh : Z −→ Y .

Proof. (1): Let S : X × I −→ Y be a homotopy between f and g. Define
S
� : X × I −→ Y as S

�(x, t) = S(x, 1 − t). Note that S
� is a homotopy

between g and f .
(2): Let S : X×I −→ Y be a homotopy between f and g and S

� : X×I −→
Y be a homotopy between g and h. Define S

�� : X× I −→ Y by the formula:

S
��(x, t) =

�
S(x, 2t) if 0 ≤ t ≤ 1/2

S
�(x, 2t− 1) if 1/2 ≤ t ≤ 1

Note that S
��(x, 0) = f(x) and S

��(x, 1) = h(x). Thus, if continuous, S
�� would

be a homotopy between f and h. To see that S
�� is continuous consider the

following compositions:

X × [0, 1/2]
α−→ X × I

S−→ Y

X × [1/2, 1]
β−→ X × I

S�
−→ Y

where α(x, t) = (x, 2t) and β(x, t) = (x, 2t−1). These composition are clearly
continuous. It follows that, if D is closed in Y , then so are (Sα)−1(D) ⊂
X × [0, 1/2] ⊂ X × I and (S �

β)−1(D) ⊂ X × [1/2, 1] ⊂ X × I. The sum
(Sα)−1(D)∪ (S �

β)−1(D) is then also closed in X× I. Note however that this
sum coincide with (S ��)−1(D). The function S

�� is therefore continuous.
(3): If S : X × I −→ Y is a homotopy between f and g, then hS is a
homotopy between hf and hg.
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(4): Let S : X × I −→ Y be a homotopy between f and g. Define S
� :

Z × I −→ Y by the formula S
�(z, t) = S(h(x), t). This is a homotopy

between fh and gh.

The fundamental example of homotopic maps are the inclusions in0 :
X −→ X×I and in1 : X −→ X×I, where in0(x) = (x, 0) and in1(x) = (x, 1).

Homotopy relation can be used to define:

1.14.3 Definition. A map f : X −→ Y is called a homotopy equivalence

if there is a map g : Y −→ X such that the compositions fg and gf are

homotopic respectively to the identity maps id : Y −→ Y and id : X −→ X.

Two spaces X and Y are said to be homotopy equivalent if there is a

homotopy equivalence f : X −→ Y .

A space is called contractible if it is homotopy equivalent to the one point

space D
0
.

The homotopy equivalence relation on spaces is an equivalence relation.
It is a weaker relation than an isomorphism. Two isomorphic spaces are
clearly homotopy equivalent.

1.14.4 Proposition. (1) If D ⊂ R
n

is non-empty and convex (the inter-

val between any two points in D is subset of D), then D is contractible.

(2) The spaces R
n
, D

n
, ∆n

, and B
n

are contractible.

Proof. (1): Let us choose a point x ∈ D. Define f : D
0 −→ D to be given by

f(0) = x and g : D −→ D
0 to be the unique map. Clearly gf = id. We need

to show that the composition fg : D −→ D is homotopic to id : D −→ D.
Define S : D × I −→ D by the formula: S(y, t) = tx + (1 − t)y. It is well
define since D is convex. Note that s(y, 0) = y and s(y, 1) = fg. Thus S is
a homotopy between id and fg.
(2): This follows from statement (1) as all these spaces are convex.

1.14.5 Proposition. (1) Let D ⊂ R
n

be convex and x ∈ D a point for

which there is r > 0 such that B(x, r) ⊂ D. Then the space D \ {x} is

homotopy equivalent to S
n−1

.

(2) Let n > 0. The spaces R
n \{0}, D

n \{0}, ∆n \{
�
1/(n+1), . . . , 1/(n+

1)
�
}, and B

n \ {0} are homotopy equivalent to S
n−1

.

Proof. Since D is convex, the space S(x, r/2) is a subspace of D. This
space S(x, r/2) is isomorphic to S

n−1. Thus to show the statement it is
enough to show that D \{x} is homotopy equivalent to S(x, r/2). Set a map
f : S(x, r/2) −→ D \ {x} to be the inclusion and g : D \ {x} −→ S(x, r/2)
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to be defined by the formula g(y) = x + r(y−x)
2|y−x| . It is straight forward to

check that gf is id : S(x, r/2) −→ S(x, r/2). We need to show that fg is
homotopic to id : D \{x} −→ D \{x}. Define H : (D \{x})× I −→ D \{x}:

H(y, t) := ty + (1− t)
�
x +

r(y − x)

2|y − x|
�

Note that H(y, 1) = id and H(y, 0) = fg(y).

1.15 π0(X)

Let X be a topological space. Note that maps f : D
0 −→ X can be identified

with elements of X. Such a map is determined by where it sends the only
point of D

0. In this way we can think about elements of X as maps from
the one point space D

0 to X. The homotopy relation on such maps can be
then rephrased in terms of elements of X as follows: two points x0, x1 ∈ X

are homotopic if there is a map α : I −→ X such that α(0) = x0 and
α(1) = x1. Such continuous maps are called paths between x0 and x1. To
have a language to describe this particular situation we are going to use the
following definition:

1.15.1 Definition. Two points x0 ∈ X and x1 ∈ X are said to be in the

same path component if there is a path α : I −→ X such that α(0) = x0 and

α(1) = x1.

Since homotopy relation on maps is an equivalence relation (see Propo-
sition 1.14.2), we get that being in the same path component is also an
equivalence relation on the set of elements of X. We can then consider the
equivalence classes of this relation and define:

1.15.2 Definition. The set of equivalence classes of the relation ”being in

the same path component” on the set of points of X is denoted by π0(X).
A space is called path connected if π0(X) consists of one point, i.e., if all

pairs of points in X are in the same path component.

1.15.3 Excercise. Show that, for any n ≥ 0, ∆n is path connected.

We are going to denote elements in π0(X) by [x], where x ∈ X is a
point in the given equivalence class. For such an element [x] ∈ π0(X), let
us denote by X[x] the subspace of X consisting of all points in X that are
in the same path component as x. These subspaces of X are called path
connected components of X. Note that these subspaces are path connected,
i.e., π0(X[x]) is the one point set.
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1.15.4 Excercise. Show that if Y is path connected, then for any map f :
Y −→ X, there is x ∈ X such that f(Y ) ⊂ X[x].
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