Lecture 3

Operations on complex vector spaces

1.16 Direct sums and homomorphisms

Let V and W be finite dimensional complex vector spaces. The direct sum $V \oplus W$ consists of pairs (v, w) of vectors $v \in V$ and $w \in W$. Addition and the action of \mathbf{C} are defined coordinatewise

$$
(v, w)+\left(v_{1}, w_{1}\right)=\left(v+v_{1}, w+w_{1}\right) \quad z(v, w)=(z v, z w)
$$

The set $V \oplus W$ with these operations is a finite dimensional C- vector space and hence a topological space.

If $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$ are basis of V and W, then:

$$
\left\{\left(v_{1}, 0\right), \ldots,\left(v_{n}, 0\right),\left(0, w_{1}\right), \ldots,\left(0, w_{m}\right)\right\}
$$

is a base of $V \oplus W$. It follows that $\operatorname{dim}(V \oplus W)=\operatorname{dim}(V)+\operatorname{dim}(W)$.
The set of linear homomorphisms $\operatorname{hom}(V, W)$ has also a natural complex vector space structure given by the following operations. Let $f, g: V \longrightarrow W$ be linear homomorphisms.

$$
(f+g)(v):=f(v)+g(v) \quad(z f)(v):=z(f(v)
$$

1.16.1 Excercise. Let V and W be complex vector spaces.
(1) Show that, for any vector space U,

$$
\operatorname{hom}(V \oplus W, U) \text { and } \operatorname{hom}(V, U) \oplus \operatorname{hom}(W, U)
$$

are isomorphic vector spaces.
(2) If T is a complex vector space such that, for any $U, \operatorname{hom}(T, U)$ and $\operatorname{hom}(V, U) \oplus \operatorname{hom}(W, U)$ are isomorphic, then T is isomorphic to $V \oplus W$.
(3) Show that $V \oplus W$ and $W \oplus V$ are isomorphic vector spaces.

Let us choose basis $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{m}\right\}$ in V and W. Let $\delta_{i j}: V \longrightarrow W$ be the unique homomorphism such that:

$$
\delta_{i j}\left(v_{s}\right)= \begin{cases}w_{i} & \text { if } s=j \\ 0 & \text { if } s \neq j\end{cases}
$$

The set $\left\{\delta_{i j}\right\}_{1 \leq i \leq m, 1 \leq j \leq n}$ is a base for $\operatorname{hom}(V, W)$. Consequently:

$$
\operatorname{dim}(\operatorname{hom}(V, W))=\operatorname{dim}(V) \operatorname{dim}(W)
$$

Furthermore, if $f: V \longrightarrow W$ is a linear function, then it can be written as a linear combination:

$$
f: \Sigma_{i, j} c_{i j} \delta_{i j}
$$

Thus $f\left(v_{j}\right)=\sum_{i=1}^{m} c_{i j} w_{i}$. This means that $\left[c_{i j}\right]_{1 \leq i \leq m, 1 \leq j \leq n}$ is the standard matrix associated to f with respect to the chosen basis. The association $f \mapsto\left[c_{i j}\right]$ is a linear isomorphism between $\operatorname{hom}(V, W)$ and $m \times n$ complex matrices. Such matrices can be identified with $\mathbf{C}^{n m}$.

Let $f: V \longrightarrow V$ be a linear function. Let us choose a base $\left\{v_{1}, \ldots, v_{n}\right\}$ in V. Let $\left[c_{i j}\right]_{1 \leq i \leq n, 1 \leq j \leq n}$ be the matrix associated to f with respect to the chosen base. We can use this matrix to define:

$$
\operatorname{det}(f):=\operatorname{det}\left[c_{i j}\right]
$$

1.16.2 Excercise. (1) Show that, for a linear function $f: V \longrightarrow V$, $\operatorname{det}(f)$ does not depend on the choice of a base in V.
(2) Show that det : $\operatorname{hom}(V, V) \longrightarrow \mathbf{C}$ is continuous.
(3) Show that the composition function:

$$
\operatorname{hom}(V, W) \times \operatorname{hom}(W, U) \ni(f, g) \mapsto g f \in \operatorname{hom}(V, U)
$$

is continuous.
For an n-dimensional complex vector space V, we define $G L(V)$ to be the subset of $\operatorname{hom}(V, V)$ that consists of these linear functions $f: V \longrightarrow V$ which are isomorphisms. We think about $G L(V)$ as a topological space with the topology given by the subspace topology of $\operatorname{hom}(V, V)$. If we choose a base in V and identify $\operatorname{hom}(V, V)$ with $n \times n$ complex matrices, then $G L(V)$ can be identified with these matrices whose determinant is not 0 . Thus the determinant induces a continuous function

$$
\operatorname{det}: G L(V) \longrightarrow \mathbf{C}^{*}
$$

where \mathbf{C}^{*} is the subspace of non-zero complex numbers in \mathbf{C}.
1.16.3 Excercise. Let V be a finite dimensional complex vector space.
(1) Show that $G L(V) \ni f \mapsto f^{-1} \in G L(V)$ is a continuous function.
(2) Show that $\pi_{0}(\operatorname{det}): \pi_{0}(G L(V)) \longrightarrow \pi_{0}\left(\mathbf{C}^{*}\right)$ is a bijection.
(3) Show that $G L(V)$ is a path connected space.

1.17 Tensor products

Let V and W be complex vector spaces. Consider a complex vector space T whose base is given by all the pairs of vectors (v, w) where $v \in V$ and $w \in W$. Thus elements in T are given by finite linear combinations

$$
z_{1}\left(v_{1}, w_{1}\right)+\cdots+z_{n}\left(v_{n}, w_{n}\right)
$$

where z_{i} 's are complex numbers. Let $U \subset T$ be a vector subspace generated by:

$$
\begin{array}{cc}
(z v, w)-(v, z w) & z(v, w)-(z v, w) \\
\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right) & \left(v, w_{1}+w_{1}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right)
\end{array}
$$

for all vectors v, v_{1}, v_{2} in V, w, w_{1}, w_{2} in W and all complex numbers z.
Define the tensor product of V and W to be the quotient vector space $V \otimes W:=T / U$. Define further a function $\mu: V \times W \longrightarrow V \otimes W$ by:

$$
\mu(v, w):=(v, w) U
$$

1.17.1 Excercise. Show that μ has the following properties:

$$
\begin{aligned}
& \mu\left(z_{1} v_{1}+z_{2} v_{2}, w\right)=z_{1} \mu\left(v_{1}, w\right)+z_{2} \mu\left(v_{2}, w\right) \\
& \mu\left(v, z_{1} w_{1}+z_{2} w_{2}\right)=z_{1} \mu\left(v, w_{1}\right)+z_{2} \mu\left(v, w_{2}\right)
\end{aligned}
$$

We can use the above properties of μ to define so called bilinear functions. We say that a function $f: V \times W \longrightarrow U$ is bilinear if:

$$
\begin{aligned}
& f\left(z_{1} v_{1}+z_{2} v_{2}, w\right)=z_{1} f\left(v_{1}, w\right)+z_{2} f\left(v_{2}, w\right) \\
& f\left(v, z_{1} w_{1}+z_{2} w_{2}\right)=z_{1} f\left(v, w_{1}\right)+z_{2} f\left(v, w_{2}\right)
\end{aligned}
$$

for any vectors v, v_{1}, and v_{2} in V, w, w_{1}, and w_{2} in W and any complex numbers z_{1} and z_{2}. We use the symbol $B(V, W \mid U)$ to denote the set of bilinear functions $f: V \times W \longrightarrow U$. Note that if $f, g: V \times W \longrightarrow U$ are bilinear, then so are $f+g$ and $z f$ for any complex number z. These operations define a complex vector space structure on $B(V, W \mid U)$.
1.17.2 Excercise. Let V and W be complex vector spaces.
(1) Show that, for any vector space $U, B(V, W \mid U)$ and $\operatorname{hom}(V, \operatorname{hom}(W, U))$ are isomorphic vector spaces.
(2) Show that for any bilinear map $f: V \times W \longrightarrow U$, there is a unique linear map $g: V \otimes W \longrightarrow U$ for which $g \mu=f$.
(3) Show that, for any vector space $U, B(V, W \mid U)$ and $\operatorname{hom}(V \otimes W, U)$ are isomorphic vector spaces.
(4) Show that if T is a vector space such that, for any $U, B(V, W \mid U)$ and $\operatorname{hom}(T, U)$ are isomorphic, then T and $V \otimes W$ are isomorphic too.
(5) Show that $V \otimes W$ and $W \otimes V$ are isomorphic.
(6) Show that $(V \oplus W) \otimes U$ and $(V \otimes U) \oplus(W \otimes U)$ are isomorphic.

$1.18 \quad K$-theory

Assume that we are given a set T, two elements $0,1 \in T$, and two operations:

$$
+: T \times T \longrightarrow T \quad \otimes: T \times T \longrightarrow T
$$

with the following properties:
(1) $(a+b)+c=a+(b+c)$
(2) $a+b=b+a$
(3) $0+a=a$
(4) $(a \otimes b) \otimes c=a \otimes(b \otimes c)$
(5) $a \otimes b=b \otimes a$
(6) $1 \otimes a=a$
(7) $a \otimes(b+c)=(a \otimes b)+(a \otimes c)$

The set T with the above operations is not a commutative ring as the addition may not have inverses. Our first goal is to transform T into a commutative ring by adding additive inverses.

Consider the set of pairs $T \times T$ and the following relation on it:

$$
(a, b) \simeq(c, d) \text { if } a+d=b+c
$$

1.18.1 Excercise. Show that \simeq is an equivalence relation on $T \times T$.

We are going to use the symbol \widehat{T} to denote the set of equivalence classes of the relation \simeq on $T \times T$. For $(a, b) \in T \times T$, we are going to denote by $a-b$ the element in \widehat{T} which is given by the equivalence class represented by the pair (a, b). Thus $a-b=c-d$ in \widehat{T} if and only if $a+d=b+c$ in T.

We define further:

$$
\begin{gathered}
1:=1-0 \quad 0:=0-0 \\
(a-b)+(c-d):=(a+c)-(b+d) \\
(a-b) \otimes(c-d):=(a \otimes c+b \otimes d)-(a \otimes d+b \otimes c)
\end{gathered}
$$

1.18.2 Excercise. Show that:
(1) the operations + and \otimes are well define on \hat{T}.
(2) $a-a=0$,
(3) $(a-b)+(c-d)=(c-d)+(a-b)$
(4) $(a-b)+(b-a)=0$
(5) the set \widehat{T} with 0 as the zero element, 1 as the unit element, and the operations + and \otimes is a commutative ring.
(6) Show that the function $\mu: T \longrightarrow \widehat{T}$ which assigns to $a \in T$ the element $a-0 \in \widehat{T}$ satisfies the following properties:

$$
\mu(0)=0, \mu(1)=1, \mu(a+b)=\mu(a)+\mu(b), \mu(a \otimes b)=\mu(a) \otimes \mu(b)
$$

(7) Show that for any other function $\alpha: T \longrightarrow R$ from T to a commutative ring R that satisfies the analogous to the above properties of μ, there is a unique ring homomorphism $\beta: \widehat{T} \longrightarrow R$ for which $\beta \mu=\alpha$.

According to the above exercises, with T we associated a commutative ring \widehat{T} and a comparison function $\mu: T \longrightarrow \widehat{T}$.
1.18.3 Example. Consider the natural numbers \mathbf{N} with the usual addition and multiplication. Then $\widehat{\mathbf{N}}$ can be identified with the ring of integers \mathbf{Z} in such way that the function μ is given by the usual inclusion $\mathbf{N} \subset \mathbf{Z}$.
1.18.4 Example. Let T be the set of isomorphism classes of finite dimensional complex vector spaces. For two vector spaces V and W define $V+W$ to be the direct sum $V \oplus W$ and $V \otimes W$ to be the tensor product of V and W. We also take 0 to be the trivial (0-dimensional) complex vector space and 1 to be the 1-dimensional complex vector space. The set T with this choice of elements and operations satisfies the required properties. The commutative ring \widehat{T} is denoted by $K\left(D^{0}\right)$. Note that $K\left(D^{0}\right)$ is isomorphic to \mathbf{Z}.
1.18.5 Excercise. Give an example of T for which $\mu: T \longrightarrow \widehat{T}$ is not an inclusion.

