Lecture 3

Operations on complex vector spaces

1.16 Direct sums and homomorphisms

Let V and W be finite dimensional complex vector spaces. The direct sum $V \oplus W$ consists of pairs (v, w) of vectors $v \in V$ and $w \in W$. Addition and the action of **C** are defined coordinatewise

$$(v, w) + (v_1, w_1) = (v + v_1, w + w_1)$$
 $z(v, w) = (zv, zw)$

The set $V \oplus W$ with these operations is a finite dimensional C- vector space and hence a topological space.

If $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_m\}$ are basis of V and W, then:

$$\{(v_1, 0), \ldots, (v_n, 0), (0, w_1), \ldots, (0, w_m)\}$$

is a base of $V \oplus W$. It follows that $\dim(V \oplus W) = \dim(V) + \dim(W)$.

The set of linear homomorphisms hom(V, W) has also a natural complex vector space structure given by the following operations. Let $f, g: V \longrightarrow W$ be linear homomorphisms.

$$(f+g)(v) := f(v) + g(v)$$
 $(zf)(v) := z(f(v))$

1.16.1 Excercise. Let V and W be complex vector spaces.

(1) Show that, for any vector space U,

 $\hom(V \oplus W, U)$ and $\hom(V, U) \oplus \hom(W, U)$

are isomorphic vector spaces.

- (2) If T is a complex vector space such that, for any U, hom(T, U) and $hom(V, U) \oplus hom(W, U)$ are isomorphic, then T is isomorphic to $V \oplus W$.
- (3) Show that $V \oplus W$ and $W \oplus V$ are isomorphic vector spaces.

Let us choose basis $\{v_1, \ldots, v_n\}$ and $\{w_1, \ldots, w_m\}$ in V and W. Let $\delta_{ij}: V \longrightarrow W$ be the unique homomorphism such that:

$$\delta_{ij}(v_s) = \begin{cases} w_i & \text{if } s = j \\ 0 & \text{if } s \neq j \end{cases}$$

The set $\{\delta_{ij}\}_{1 \le i \le m, 1 \le j \le n}$ is a base for hom(V, W). Consequently:

$$\dim(\hom(V, W)) = \dim(V)\dim(W)$$

Furthermore, if $f: V \longrightarrow W$ is a linear function, then it can be written as a linear combination:

 $f: \Sigma_{i,j} c_{ij} \delta_{ij}$

Thus $f(v_j) = \sum_{i=1}^m c_{ij} w_i$. This means that $[c_{ij}]_{1 \le i \le m, 1 \le j \le n}$ is the standard matrix associated to f with respect to the chosen basis. The association $f \mapsto [c_{ij}]$ is a linear isomorphism between hom(V, W) and $m \times n$ complex matrices. Such matrices can be identified with \mathbf{C}^{nm} .

Let $f: V \longrightarrow V$ be a linear function. Let us choose a base $\{v_1, \ldots, v_n\}$ in V. Let $[c_{ij}]_{1 \le i \le n, 1 \le j \le n}$ be the matrix associated to f with respect to the chosen base. We can use this matrix to define:

$$\det(f) := \det[c_{ij}]$$

- 1.16.2 Excercise. (1) Show that, for a linear function $f: V \longrightarrow V$, $\det(f)$ does not depend on the choice of a base in V.
 - (2) Show that det : $\hom(V, V) \longrightarrow \mathbf{C}$ is continuous.
 - (3) Show that the composition function:

$$\hom(V, W) \times \hom(W, U) \ni (f, g) \mapsto gf \in \hom(V, U)$$

is continuous.

For an *n*-dimensional complex vector space V, we define GL(V) to be the subset of hom(V, V) that consists of these linear functions $f: V \longrightarrow V$ which are isomorphisms. We think about GL(V) as a topological space with the topology given by the subspace topology of hom(V, V). If we choose a base in V and identify hom(V, V) with $n \times n$ complex matrices, then GL(V)can be identified with these matrices whose determinant is not 0. Thus the determinant induces a continuous function

$$\det: GL(V) \longrightarrow \mathbf{C}^*$$

where C^* is the subspace of non-zero complex numbers in C.

1.16.3 Excercise. Let V be a finite dimensional complex vector space.

- (1) Show that $GL(V) \ni f \mapsto f^{-1} \in GL(V)$ is a continuous function.
- (2) Show that $\pi_0(\det) : \pi_0(GL(V)) \longrightarrow \pi_0(\mathbf{C}^*)$ is a bijection.
- (3) Show that GL(V) is a path connected space.

1.17 Tensor products

Let V and W be complex vector spaces. Consider a complex vector space T whose base is given by all the pairs of vectors (v, w) where $v \in V$ and $w \in W$. Thus elements in T are given by finite linear combinations

$$z_1(v_1, w_1) + \dots + z_n(v_n, w_n)$$

where z_i 's are complex numbers. Let $U \subset T$ be a vector subspace generated by:

$$(zv, w) - (v, zw) \qquad z(v, w) - (zv, w)$$
$$(v_1 + v_2, w) - (v_1, w) - (v_2, w) \qquad (v, w_1 + w_1) - (v, w_1) - (v, w_2)$$

for all vectors v, v_1, v_2 in V, w, w_1, w_2 in W and all complex numbers z.

Define the tensor product of V and W to be the quotient vector space $V \otimes W := T/U$. Define further a function $\mu : V \times W \longrightarrow V \otimes W$ by:

$$\mu(v,w) := (v,w)U$$

1.17.1 Excercise. Show that μ has the following properties:

$$\mu(z_1v_1 + z_2v_2, w) = z_1\mu(v_1, w) + z_2\mu(v_2, w)$$
$$\mu(v, z_1w_1 + z_2w_2) = z_1\mu(v, w_1) + z_2\mu(v, w_2)$$

We can use the above properties of μ to define so called bilinear functions. We say that a function $f: V \times W \longrightarrow U$ is bilinear if:

$$f(z_1v_1 + z_2v_2, w) = z_1f(v_1, w) + z_2f(v_2, w)$$
$$f(v, z_1w_1 + z_2w_2) = z_1f(v, w_1) + z_2f(v, w_2)$$

for any vectors v, v_1 , and v_2 in V, w, w_1 , and w_2 in W and any complex numbers z_1 and z_2 . We use the symbol B(V, W|U) to denote the set of bilinear functions $f : V \times W \longrightarrow U$. Note that if $f, g : V \times W \longrightarrow U$ are bilinear, then so are f + g and zf for any complex number z. These operations define a complex vector space structure on B(V, W|U).

1.17.2 Excercise. Let V and W be complex vector spaces.

- (1) Show that, for any vector space U, B(V, W|U) and hom(V, hom(W, U)) are isomorphic vector spaces.
- (2) Show that for any bilinear map $f: V \times W \longrightarrow U$, there is a unique linear map $g: V \otimes W \longrightarrow U$ for which $g\mu = f$.

- (3) Show that, for any vector space U, B(V, W|U) and hom $(V \otimes W, U)$ are isomorphic vector spaces.
- (4) Show that if T is a vector space such that, for any U, B(V, W|U) and hom(T, U) are isomorphic, then T and $V \otimes W$ are isomorphic too.
- (5) Show that $V \otimes W$ and $W \otimes V$ are isomorphic.
- (6) Show that $(V \oplus W) \otimes U$ and $(V \otimes U) \oplus (W \otimes U)$ are isomorphic.

1.18 *K*-theory

Assume that we are given a set T, two elements $0, 1 \in T$, and two operations:

$$+: T \times T \longrightarrow T \qquad \otimes: T \times T \longrightarrow T$$

with the following properties:

- (1) (a+b) + c = a + (b+c)
- $(2) \ a+b=b+a$
- (3) 0 + a = a
- (4) $(a \otimes b) \otimes c = a \otimes (b \otimes c)$
- (5) $a \otimes b = b \otimes a$
- (6) $1 \otimes a = a$
- (7) $a \otimes (b+c) = (a \otimes b) + (a \otimes c)$

The set T with the above operations is not a commutative ring as the addition may not have inverses. Our first goal is to transform T into a commutative ring by adding additive inverses.

Consider the set of pairs $T \times T$ and the following relation on it:

$$(a,b) \simeq (c,d)$$
 if $a+d = b+c$

1.18.1 Excercise. Show that \simeq is an equivalence relation on $T \times T$.

We are going to use the symbol \widehat{T} to denote the set of equivalence classes of the relation \simeq on $T \times T$. For $(a, b) \in T \times T$, we are going to denote by a - b the element in \widehat{T} which is given by the equivalence class represented by the pair (a, b). Thus a - b = c - d in \widehat{T} if and only if a + d = b + c in T. We define further:

$$1 := 1 - 0 \qquad 0 := 0 - 0$$
$$(a - b) + (c - d) := (a + c) - (b + d)$$
$$(a - b) \otimes (c - d) := (a \otimes c + b \otimes d) - (a \otimes d + b \otimes c)$$

1.18.2 Excercise. Show that:

- (1) the operations + and \otimes are well define on \hat{T} .
- (2) a a = 0,
- (3) (a-b) + (c-d) = (c-d) + (a-b)
- $(4) \ (a-b) + (b-a) = 0$
- (5) the set \widehat{T} with 0 as the zero element, 1 as the unit element, and the operations + and \otimes is a commutative ring.
- (6) Show that the function $\mu: T \longrightarrow \widehat{T}$ which assigns to $a \in T$ the element $a 0 \in \widehat{T}$ satisfies the following properties:

$$\mu(0) = 0, \ \mu(1) = 1, \ \mu(a+b) = \mu(a) + \mu(b), \ \mu(a \otimes b) = \mu(a) \otimes \mu(b)$$

(7) Show that for any other function $\alpha : T \longrightarrow R$ from T to a commutative ring R that satisfies the analogous to the above properties of μ , there is a unique ring homomorphism $\beta : \widehat{T} \longrightarrow R$ for which $\beta \mu = \alpha$.

According to the above exercises, with T we associated a commutative ring \widehat{T} and a comparison function $\mu: T \longrightarrow \widehat{T}$.

1.18.3 Example. Consider the natural numbers \mathbf{N} with the usual addition and multiplication. Then $\widehat{\mathbf{N}}$ can be identified with the ring of integers \mathbf{Z} in such way that the function μ is given by the usual inclusion $\mathbf{N} \subset \mathbf{Z}$.

1.18.4 Example. Let T be the set of isomorphism classes of finite dimensional complex vector spaces. For two vector spaces V and W define V + W to be the direct sum $V \oplus W$ and $V \otimes W$ to be the tensor product of V and W. We also take 0 to be the trivial (0-dimensional) complex vector space and 1 to be the 1-dimensional complex vector space. The set T with this choice of elements and operations satisfies the required properties. The commutative ring \hat{T} is denoted by $K(D^0)$. Note that $K(D^0)$ is isomorphic to \mathbb{Z} .

1.18.5 Excercise. Give an example of T for which $\mu: T \longrightarrow \widehat{T}$ is not an inclusion.