Lecture 4

1.19 Complex vector bundles

In this section we are going to define complex vector bundles. We start with discussing the simplest type of vector bundles, the product bundles. Let U be a topological space and $f: U \times \mathbf{C}^{n} \longrightarrow U \times \mathbf{C}^{m}$ be a function (I do not assume that f is continuous) such that:
(1) $\operatorname{pr}_{U} f=\operatorname{pr}_{U}$, i.e., the following diagram commutes:

(2) the induced map $f(x,-):\{x\} \times \mathbf{C}^{n} \longrightarrow\{x\} \times \mathbf{C}^{m}$ is linear for all $x \in U$. We will often denote this map by $f_{x}: \mathbf{C}^{n} \longrightarrow \mathbf{C}^{m}$.

Such a function f induces then a function $\hat{f}: U \longrightarrow \operatorname{hom}\left(\mathbf{C}^{n}, \mathbf{C}^{m}\right)$ which maps $x \in U$ to the linear function $f_{x} \in \operatorname{hom}\left(\mathbf{C}^{n}, \mathbf{C}^{m}\right)$.
1.19.1 Lemma. f is continuous if and only if \hat{f} is continuous.

Proof. We will show only one implication. The other is left as an exercise. Assume that \hat{f} is continuous. Consider the following composition:

$$
\begin{aligned}
&(x, v) \longmapsto(x, \hat{f}(x), v) \\
& U \times \mathbf{C}^{n} \longrightarrow U \times \operatorname{hom}\left(\mathbf{C}^{n}, \mathbf{C}^{m}\right) \times \mathbf{C}^{n} \longrightarrow \\
&(x, \phi, v) \longmapsto \\
& \longrightarrow \mathbf{C}^{n} \\
& \longrightarrow(x, \phi(v))
\end{aligned}
$$

Note that both of the above functions are continuous, and hence so is their composition. Note finally that this composition maps (x, v) to $(x, \hat{f}(x)(v))=$ $f(x, v)$. We can conclude that f is then continuous.
1.19.2 Excercise. Finish the proof of the above proposition. It remains to show the implication: if f is continuous, then so is \hat{f}.
1.19.3 Definition. (1) A complex vector bundle is a map $p: E \longrightarrow X$; together with a structure of C-vector space on $p^{-1}(x)$ for any $x \in X$; The map p, and the vector spaces $p^{-1}(x)$, for $x \in X$, are required to satisfy the following condition: for any $x \in X$, there is an open set $x \in U \subset X$ and an isomorphism $\phi: U \times \mathbf{C}^{n} \longrightarrow p^{-1}(U)$ such that:

- $p \phi=p r_{U}$, i.e., the following diagram commutes:

- for any $y \in U$, the induced isomorphism $\phi(y,-): \mathbf{C}^{n} \longrightarrow p^{-1}(y)$ is \mathbf{C}-linear.
(2) Let $p: E \longrightarrow X$ be a complex vector bundle. We say that p is trivial on an open subset $U \subset X$ if there is an isomorphism $\phi: U \times \mathbf{C}^{n} \longrightarrow p^{-1}(U)$ such that:
- $p \phi=p r_{U}$, i.e., the following diagram commutes:

- for any $y \in U$, the induced isomorphism $\phi(y,-): \mathbf{C}^{n} \longrightarrow p^{-1}(y)$ is \mathbf{C}-linear.

Any such isomorphism ϕ is called a trivialization of p on U.
(3) Let $p: E \longrightarrow X$ and $q: F \longrightarrow Y$ be complex vector bundles. A vector bundle map between p and q is a pair of continuous maps $f_{0}: X \longrightarrow Y$ and $f: E \longrightarrow F$ such that:

- $f_{0} p=q f$, i.s., the following diagram commutes:

- For any $x \in X$, the induced map $f: p^{-1}(x) \longrightarrow q^{-1}(f(x))$ is linear.
1.19.4 Example. Let $X=\mathbf{C} P^{n}, E=\left\{(L, z) \in \mathbf{C} P^{n} \times \mathbf{C}^{n+1} \mid z \in L\right\}$, and $\lambda_{n}: E \longrightarrow X$ is the function that maps (L, z) to L. Thus λ is the composition of the inclusion $E \subset \mathbf{C} P^{n} \times \mathbf{C}^{n+1}$ and the projection $\mathbf{C} P^{n} \times \mathbf{C}^{n+1} \longrightarrow \mathbf{C} P^{n}$. It is then a continuous function. Note that for any $L \in \mathbf{C} P^{n}, \lambda_{n}^{-1}(L)=L \subset$ \mathbf{C}^{n+1} is a 1-dimensional complex vector subspace of \mathbf{C}^{n+1}. We claim that with this choice of complex vector structures on $\lambda_{n}^{-1}(L)$, for $L \in \mathbf{C} P^{n}, \lambda$ is a vector bundle.

Let $U_{i} \subset \mathbf{C} P^{n}$ be the set of these lines that contain a vector of the form $\left(z_{1}, \ldots, z_{n+1}\right)$ with $z_{i}=1$ (see 1.12.3). Let $\phi: U_{i} \times \mathbf{C} \longrightarrow \lambda^{-1}\left(U_{i}\right)$ be a function that maps ($L=$ line generated $\left.\operatorname{by}\left(z_{1}, \ldots, z_{i}=1, \ldots, z_{n+1}\right), r\right)$ to $\left(L, r\left(z_{1}, \ldots, z_{n+1}\right)\right.$. Then ϕ is a continuous isomorphism.

1.20 Maps of vector bundles

Let $p: E \longrightarrow X$ and $q: F \longrightarrow Y$ be complex vector bundles and $f_{0}: X \longrightarrow$ Y be a continuous map. Assume that $f: E \longrightarrow F$ is function (not necessarily continuous) such that $f_{0} p=q f$, i,e., the following diagram commutes:

Assume that $\left\{U_{i}\right\}_{i \in I}$ is an open cover of X such that p is trivial over U_{i} for any i. Let $\phi_{i}: U_{i} \times \mathbf{C}^{n} \longrightarrow p^{-1}\left(U_{i}\right)$ be a trivialization of p on U_{i}. Let that $\left\{V_{j}\right\}_{j \in J}$ be an open cover of Y such that q is trivial over V_{j} for any j. Let $\psi_{j}: V_{i} \times \mathbf{C}^{m} \longrightarrow q^{-1}\left(V_{i}\right)$ be a trivialization of q on V_{j}. Consider an open covering $\left\{W_{i, j}:=U_{i} \cap f_{0}^{-1}\left(V_{j}\right)\right\}_{i \in I, j \in J}$ of X. All these functions fit into the following commutative diagram:

1.20.1 Excercise. Show that $\left(f_{0}, f\right)$ is a vector bundle map between p and q if and only if the following two conditions are satisfied:

- For any $x \in W_{i, j}, \psi_{j}^{-1} f \phi_{i}(x,-): \mathbf{C}^{n} \longrightarrow \mathbf{C}^{m}$ is linear,
- the induced function $\widehat{\psi_{j}^{-1} f \phi_{i}}: W_{i, j} \longrightarrow \operatorname{hom}\left(\mathbf{C}^{n}, \mathbf{C}^{m}\right)$ is continuous (see 1.19.1).

This can be used to construct maps of vector bundles:
1.20.2 Corollary. Let $p: E \longrightarrow X$ and $q: F \longrightarrow Y$ be complex vector bundles and $\left(f_{0}: X \longrightarrow Y, f: E \longrightarrow F\right)$ be a vector bundle map between p and q. Then $\left(f_{0}, f\right)$ is an isomorphism if and only if f_{0} is an isomorphism and, for any $x \in X$, the induced map $f: p^{-1}(x) \longrightarrow q^{-1}\left(f_{0}(x)\right)$ is a linear isomorphism.

Proof. If $\left(f_{0}, f\right)$ is an isomorphism then it has an inverse and hence the required conditions are necessary.

Assume that the above conditions are satisfied. The inverse f_{0}^{-1} is continuos by definition. Continuity of the inverse f^{-1} follows from the above exercise and the fact that the inverse function $\mathrm{GL}\left(\mathbf{C}^{n}\right) \ni \alpha \mapsto \alpha^{-1} \in \mathrm{GL}\left(\mathbf{C}^{n}\right)$ is continuous.

