Lecture 4

1.19 Complex vector bundles

In this section we are going to define complex vector bundles. We start with discussing the simplest type of vector bundles, the product bundles. Let U be a topological space and $f: U \times \mathbb{C}^n \longrightarrow U \times \mathbb{C}^m$ be a function (I do not assume that f is continuous) such that:

(1) $pr_U f = pr_U$, i.e., the following diagram commutes:

(2) the induced map $f(x, -) : \{x\} \times \mathbb{C}^n \longrightarrow \{x\} \times \mathbb{C}^m$ is linear for all $x \in U$. We will often denote this map by $f_x : \mathbb{C}^n \longrightarrow \mathbb{C}^m$.

Such a function f induces then a function $\hat{f}: U \longrightarrow \hom(\mathbf{C}^n, \mathbf{C}^m)$ which maps $x \in U$ to the linear function $f_x \in \hom(\mathbf{C}^n, \mathbf{C}^m)$.

1.19.1 Lemma. f is continuous if and only if \hat{f} is continuous.

Proof. We will show only one implication. The other is left as an exercise. Assume that \hat{f} is continuous. Consider the following composition:

 $(x,v) \longmapsto (x,\hat{f}(x),v)$

 $U \times \mathbf{C}^n \longrightarrow U \times \hom(\mathbf{C}^n, \mathbf{C}^m) \times \mathbf{C}^n \longrightarrow U \times \mathbf{C}^n$

 $(x,\phi,v) \longmapsto (x,\phi(v))$

Note that both of the above functions are continuous, and hence so is their composition. Note finally that this composition maps (x, v) to $(x, \hat{f}(x)(v)) = f(x, v)$. We can conclude that f is then continuous.

1.19.2 Excercise. Finish the proof of the above proposition. It remains to show the implication: if f is continuous, then so is \hat{f} .

- **1.19.3 Definition.** (1) A complex vector bundle is a map $p : E \longrightarrow X$; together with a structure of **C**-vector space on $p^{-1}(x)$ for any $x \in X$; The map p, and the vector spaces $p^{-1}(x)$, for $x \in X$, are required to satisfy the following condition: for any $x \in X$, there is an open set $x \in U \subset X$ and an isomorphism $\phi : U \times \mathbb{C}^n \longrightarrow p^{-1}(U)$ such that:
 - $p\phi = pr_U$, *i.e.*, the following diagram commutes:

- for any y ∈ U, the induced isomorphism φ(y, −) : Cⁿ → p⁻¹(y) is C-linear.
- (2) Let $p: E \longrightarrow X$ be a complex vector bundle. We say that p is trivial on an open subset $U \subset X$ if there is an isomorphism $\phi: U \times \mathbb{C}^n \longrightarrow p^{-1}(U)$ such that:
 - $p\phi = pr_U$, *i.e.*, the following diagram commutes:

for any y ∈ U, the induced isomorphism φ(y, −) : Cⁿ → p⁻¹(y) is C-linear.

Any such isomorphism ϕ is called a trivialization of p on U.

- (3) Let $p: E \longrightarrow X$ and $q: F \longrightarrow Y$ be complex vector bundles. A vector bundle map between p and q is a pair of continuous maps $f_0: X \longrightarrow Y$ and $f: E \longrightarrow F$ such that:
 - $f_0 p = qf$, i.s., the following diagram commutes:

• For any $x \in X$, the induced map $f : p^{-1}(x) \longrightarrow q^{-1}(f(x))$ is linear.

1.19.4 Example. Let $X = \mathbb{C}P^n$, $E = \{(L, z) \in \mathbb{C}P^n \times \mathbb{C}^{n+1} \mid z \in L\}$, and $\lambda_n : E \longrightarrow X$ is the function that maps (L, z) to L. Thus λ is the composition of the inclusion $E \subset \mathbb{C}P^n \times \mathbb{C}^{n+1}$ and the projection $\mathbb{C}P^n \times \mathbb{C}^{n+1} \longrightarrow \mathbb{C}P^n$. It is then a continuous function. Note that for any $L \in \mathbb{C}P^n$, $\lambda_n^{-1}(L) = L \subset \mathbb{C}^{n+1}$ is a 1-dimensional complex vector subspace of \mathbb{C}^{n+1} . We claim that with this choice of complex vector structures on $\lambda_n^{-1}(L)$, for $L \in \mathbb{C}P^n$, λ is a vector bundle.

Let $U_i \subset \mathbb{C}P^n$ be the set of these lines that contain a vector of the form (z_1, \ldots, z_{n+1}) with $z_i = 1$ (see 1.12.3). Let $\phi : U_i \times \mathbb{C} \longrightarrow \lambda^{-1}(U_i)$ be a function that maps $(L = \text{line generated by}(z_1, \ldots, z_i = 1, \ldots, z_{n+1}), r)$ to $(L, r(z_1, \ldots, z_{n+1}))$. Then ϕ is a continuous isomorphism.

1.20 Maps of vector bundles

Let $p: E \longrightarrow X$ and $q: F \longrightarrow Y$ be complex vector bundles and $f_0: X \longrightarrow Y$ be a continuous map. Assume that $f: E \longrightarrow F$ is function (not necessarily continuous) such that $f_0p = qf$, i.e., the following diagram commutes:

$$E \xrightarrow{f} F$$

$$p \downarrow \qquad \qquad \downarrow q$$

$$X \xrightarrow{f_0} Y$$

Assume that $\{U_i\}_{i\in I}$ is an open cover of X such that p is trivial over U_i for any i. Let $\phi_i : U_i \times \mathbb{C}^n \longrightarrow p^{-1}(U_i)$ be a trivialization of p on U_i . Let that $\{V_j\}_{j\in J}$ be an open cover of Y such that q is trivial over V_j for any j. Let $\psi_j : V_i \times \mathbb{C}^m \longrightarrow q^{-1}(V_i)$ be a trivialization of q on V_j . Consider an open covering $\{W_{i,j} := U_i \cap f_0^{-1}(V_j)\}_{i\in I, j\in J}$ of X. All these functions fit into the following commutative diagram:

1.20.1 Excercise. Show that (f_0, f) is a vector bundle map between p and q if and only if the following two conditions are satisfied:

- For any $x \in W_{i,j}, \psi_j^{-1} f \phi_i(x, -) : \mathbf{C}^n \longrightarrow \mathbf{C}^m$ is linear,
- the induced function $\widehat{\psi_j}^{-1} f \phi_i : W_{i,j} \longrightarrow \hom(\mathbf{C}^n, \mathbf{C}^m)$ is continuous (see 1.19.1).

This can be used to construct maps of vector bundles:

1.20.2 Corollary. Let $p : E \longrightarrow X$ and $q : F \longrightarrow Y$ be complex vector bundles and $(f_0 : X \longrightarrow Y, f : E \longrightarrow F)$ be a vector bundle map between p and q. Then (f_0, f) is an isomorphism if and only if f_0 is an isomorphism and, for any $x \in X$, the induced map $f : p^{-1}(x) \longrightarrow q^{-1}(f_0(x))$ is a linear isomorphism.

Proof. If (f_0, f) is an isomorphism then it has an inverse and hence the required conditions are necessary.

Assume that the above conditions are satisfied. The inverse f_0^{-1} is continuous by definition. Continuity of the inverse f^{-1} follows from the above exercise and the fact that the inverse function $\operatorname{GL}(\mathbf{C}^n) \ni \alpha \mapsto \alpha^{-1} \in \operatorname{GL}(\mathbf{C}^n)$ is continuous.