
Lecture 5

Constructing new vector bundles

1.21 Pull-back

Let p : E −→ X be a vector bundle and f0 : Y −→ X be a continuous map.
Define:

• F := {(y, e) ∈ Y × E | f0(y) = p(e)} with the subspace topology in
Y × E;

• f
∗
0 p : F −→ Y to be the composition of the inclusion F ⊂ Y × E and
the projection prY : Y × E −→ Y ;

• f : F −→ E to be the composition of the inclusion F ⊂ Y ×E and the
projection prE : Y × E −→ E.

As compositions of continuous maps, the functions f ∗
0 p and f are continuous.

1.21.1 Excercise. Show that the following diagram commutes:

F
f ��

f∗
0 p

��

E

p

��
Y

f0 �� X

Note that for y ∈ Y , (f ∗
0 p)

−1(y) = {y}×p
−1(f0(y)). Thus we can identify

(f ∗
0 p)

−1(y) with p
−1(f0(y)). Via this identification, (f ∗

0 p)
−1(y) becomes a

complex vector space.

1.21.2 Proposition. The map f
∗
0 p : F −→ Y together with the complex

vector space structures on (f ∗
0 p)

−1(y), for y ∈ Y is a complex vector bundle.

Proof. Let U ⊂ X be an open subset over which p is trivial. We can then
choose inverse isomorphism φ and φ

−1 for which the following diagram com-
mutes:

U ×Cn φ ��

pr
������������� p

−1(U)
φ−1

��

p

��

U ×Cn

pr
�������������

U

Let V = f
−1
0 (U). We claim that f ∗

0 p is trivial over V . Define:
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• ψ : V ×Cn −→ (f ∗
0 p)

−1(V ) ⊂ V × p
−1(U), ψ(y, v) := (y,φ(f0(y), v))

• ψ
−1 : (f ∗

0 p)
−1(V ) −→ V ×Cn

, ψ
−1(e) := (f ∗

0 p(y),φ
−1
f(e))

From this definition it is clear that ψ and ψ
−1 are continuous functions and

that they are inverse to each other.

The vector bundle f
∗
0 p : F −→ Y is called the pull-back of p along

f0 : Y −→ X.

1.22 External product

Let p : E −→ X and q : F −→ Y be vector bundles. Then the product
map p× q : E × F −→ X × Y is also a vector bundle with the vector space
structure on (p×q)−1(x, y) = p

−1(x)×q
−1(y) given by the product structure.

This vector bundle is called the external product of p and q.
To see the triviality of p × q assume that {Ui}i∈I is an open cover of X

over which p is trivial and {Vj}j∈J is an open cover of Y over which q is
trivial. Consider the cover {Ui × Vj}i∈I,j∈J of the product X × Y . We claim
that p× q is trivial over Ui × Vj for any i ∈ I and j ∈ J .

1.22.1 Excercise. Show the triviality of p× q over Ui × Vj.

1.23 Direct sum

Let p : E −→ X and q : F −→ X be vector bundles over the same base X.
Define:

• E ⊕ F :=
�

x∈X p
−1(x)⊕ q

−1(x);

• p⊕ q : E ⊕ F −→ X to be a function that maps elements in p
−1(x)⊕

q
−1(x) to x. Thus (p⊕ q)−1(x) = p

−1(x)⊕ q
−1(x).

• The C-vector space structure on (p⊕ q)−1(x) to be the direct product
of the vector spaces p−1(x) and q

−1(x).

To define the topology on E ⊕ F we need to choose trivializations of p
and q. Assume that p is trivial over {Ui}i∈I and q is trivial over {Vj}j∈J .
Let φi : Ui × Cn −→ p

−1(Ui) and ψj : Vj × Cm −→ q
−1(Vj) be isomor-

phism corresponding to the open subsets Ui and Vj. Consider the open cover
{Wi,j := Ui ∩ Vj}i∈I,j∈J of X and define:
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• µi,j : Wi,j × (Cn ⊕Cm) −→ (p⊕ q)−1(Wi,j) =
�

x∈Wi,j
p
−1(x)⊕ q

−1(x)
to be given by:

µi,j(x, v, w) := (φ(x, v),ψ(x, w))

• A subset T ⊂ E ⊕F to be open if and only if µ−1
i,j (T ∩ (p⊕ q)−1(Wi,j))

is open in Wi,j × (Cn ⊕Cm) for any i ∈ I and j ∈ J .

1.23.1 Excercise. (1) Show that the above definition of open subsets in
E ⊕ F defines a topology on E ⊕ F for which p⊕ q : E ⊕ F −→ X is
a continuous function.

(2) Show that this topology does not depend on the choice of the trivial-
izations φi and ψj.

(3) Show that µi,j are isomorphism.

(4) Conclude that p⊕ q : E ⊕ F −→ X is a vector bundle.

The map p⊕ q : E ⊕ F −→ X together with the vector space structures
on its fibers (p⊕ q)−1(x), for x ∈ X, is called the direct sum of p and q.

1.23.2 Excercise. Let ∆ : X −→ X ×X be the diagonal map that maps x to
∆(x) = (x, x). Show that for any complex vector bundles p : E −→ X and
q : F −→ X, the pull-back of the external product ∆∗(p × q) is isomorphic
to the direct sum p⊕ q.

1.24 Tensor product

We follows the same procedure as in the case of the direct sum. Let p : E −→
X and q : F −→ X be vector bundles over the same base X. Define:

• E ⊗ F :=
�

x∈X p
−1(x)⊗ q

−1(x);

• p⊗ q : E ⊗ F −→ X to be a function that maps elements in p
−1(x)⊗

q
−1(x) to x. Thus (p⊗ q)−1(x) = p

−1(x)⊗ q
−1(x).

• The C-vector space structure on (p⊗ q)−1(x) to be the tensor product
of the vector spaces p−1(x) and q

−1(x).

To define the topology on E ⊗ F we need to choose trivializations of p
and q. Assume that p is trivial over {Ui}i∈I and q is trivial over {Vj}j∈J .
Let φi : Ui × Cn −→ p

−1(Ui) and ψj : Vj × Cm −→ q
−1(Vj) be isomor-

phism corresponding to the open subsets Ui and Vj. Consider the open cover
{Wi,j := Ui ∩ Vj}i∈I,j∈J of X and define:
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• µi,j : Wi,j × (Cn ⊗Cm) −→ (p⊗ q)−1(Wi,j) =
�

x∈Wi,j
p
−1(x)⊗ q

−1(x)
to be given by:

µi,j(x, v ⊗ w) := (φ(x, v)⊗ ψ(x, w))

• A subset T ⊂ E ⊗F to be open if and only if µ−1
i,j (T ∩ (p⊗ q)−1(Wi,j))

is open in Wi,j × (Cn ⊗Cm) for any i ∈ I and j ∈ J .

1.24.1 Excercise. (1) Show that the above definition of open subsets in
E ⊗ F defines a topology on E ⊗ F for which p⊗ q : E ⊗ F −→ X is
a continuous function.

(2) Show that this topology does not depend on the choice of the trivial-
izations φi and ψj.

(3) Show that µi,j are isomorphism.

(4) Conclude that p⊗ q : E ⊗ F −→ X is a vector bundle.

The map p⊗ q : E ⊗ F −→ X together with the vector space structures
on its fibers (p⊗ q)−1(x), for x ∈ X, is called the tensor product of p and
q.

1.25 Hom

We follows the same procedure as in the case of the direct sum and tensor
product. Let p : E −→ X and q : F −→ X be vector bundles over the same
base X. Define:

• Hom(E,F ) :=
�

x∈X hom(p−1(x), q−1(x));

• Hom(p, q) : Hom(E,F ) −→ X to be a function that maps elements in
f ∈ hom(p−1(x), q−1(x)) to x. Thus:

Hom(p, q)−1(x) = hom(p−1(x), q−1(x))

• The C-vector space structure on Hom(p, q)−1(x) to be the standard
complex vector space structure on the set of linear homomorphisms
hom(p−1(x), q−1(x)).

To define the topology on Hom(E,F ) we need to choose trivializations of
p and q. Assume that p is trivial over {Ui}i∈I and q is trivial over {Vj}j∈J .
Let φi : Ui × Cn −→ p

−1(Ui) and ψj : Vj × Cm −→ q
−1(Vj) be isomor-

phism corresponding to the open subsets Ui and Vj. Consider the open cover
{Wi,j := Ui ∩ Vj}i∈I,j∈J of X and define:
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• µi,j : Wi,j×Hom(Cn
,Cm) −→ Hom(p, q)−1(Wi,j) =

�
x∈Wi,j

hom(p−1(x), q−1(x))
to be given by:

µi,j(x, f) := (φ(x,−)fψ(x,−)−1)

• A subset T ⊂ Hom(E,F ) to be open if and only if µ−1
i,j (T∩Hom(p, q)−1(Wi,j))

is open in Wi,j × Hom(Cn
,Cm) for any i ∈ I and j ∈ J .

1.25.1 Excercise. (1) Show that the above definition of open subsets in
Hom(E,F ) defines a topology on Hom(E,F ) for which Hom(p, q) :
Hom(E,F ) −→ X is a continuous function.

(2) Show that this topology does not depend on the choice of the trivial-
izations φi and ψj.

(3) Show that µi,j are isomorphism.

(4) Conclude that Hom(p, q) : Hom(E,F ) −→ X is a vector bundle.

The map Hom(p, q) : Hom(E,F ) −→ X together with the vector space
structures on its fibers Hom(p, q)−1(x), for x ∈ X, is called the Hom bundle
between p and q.

1.26 The K-theory of a topological space

Let n be a natural number. We are going to denote by n the product vector
bundle: pr : X × Cn −→ X with the standard vector space structure on
the fiber Cn. For example 0 is the vector bundle id : X −→ X with the
0-dimensional vector space structure on any fiber of id : X −→ X, and 1 is
the vector bundle pr : X × C1 −→ X with the 1-dimensional vector space
structure on any fiber C1.

1.26.1 Excercise. Show that:

(1) n⊕m and n+m are isomorphic.

(2) n⊗m and nm are isomorphic.

1.26.2 Proposition. Let p : E −→ X, q : F −→ X, and r : G −→ X be

vector bundles. Then

(1) p⊕ q is isomorphic to q ⊕ p;

(2) (p⊕ q)⊕ r is isomorphic to q ⊕ (p⊕ r);
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(3) p⊕ 0 is isomorphic to p

(4) p⊗ q is isomorphic to q ⊗ p

(5) (p⊗ q)⊗ r is isomorphic to q ⊗ (p⊗ r)

(6) p⊗ 1 is isomorphic to p

(7) p⊗ q ⊕ r is isomorphic to (p⊗ q)⊕ (p⊗ r)

Proof. One uses the same argument to prove all these statements. We are
going to illustrate only how to show (4). Adjustment of this argument to
other cases is left as an exercise. Let f : E ⊗ F −→ F ⊗ E to be given by
the following formula:

E⊗F =
�

x∈X

p
−1(x)⊗q

−1(x) � v×w �→ w⊗v ∈
�

x∈X

q
−1(x)⊗p

−1(x) = F ×E

Using 1.20.1, it is straightforward to see that f is a vector bundle isomor-
phism.

We define Vect(X) to be the set of isomorphism classes of complex vector
bundles over X. The above proposition states that this set with the oper-
ations ⊕, ⊗, and chosen elements 0 and 1 satisfies the properties given in
Sections 1.18.

1.26.3 Definition. K(X) := �Vect(X) (see Sections 1.18).

Thus K(X) is a commutative ring whose elements are denoted by p − q

where p : E −→ X and q : F −→ X are complex vector bundles over X.
Two such elements p− q and p

� − q
� are equal if and only if there is a vector

bundle r : G −→ X such that p⊕ q
� ⊕ r and p

� ⊕ q ⊕ t are isomorphic.
We are going to denote the element p− 0 simply by p. In the ring K(X)

the addition is given by (p − q) ⊕ (p� − q
�) = (p ⊕ p

�) − (q ⊕ q
�). The unit

element for this addition is given by 0. The multiplication in K(X) is given
by (p− q)⊗ (p� − q

�) = ((p⊗ p
�)⊕ (q ⊗ q

�))− ((p⊗ q
�)⊕ (q ⊗ p

�)). The unit
for this multiplication is given by 1.

1.26.4 Example. Vect(D0) is isomorphic to the set of natural numbers N
with the usual addition and multiplication. In this case K(D0) is the ring of
integers Z.
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1.27 Sections of vector bundles

Let p : E −→ X be a vector bundle and Y ⊂ X be a subspace. A section
of p over Y is by definition a continuous function s : Y −→ E such that
ps = idY . We use the symbol Γ(p, Y ) to denote the set of all sections of p
over Y .

Recall that p−1(x) is a complex vector space for any x ∈ X. Using this
structure we can define the complex space structure on Γ(p, Y ). Let z ∈ C
be a complex number and s, t ∈ Γ(p, Y ) be sections of p over Y ⊂ X. Define:

• zs : Y −→ E to be the function that assigns to an element y the
element zs(y) ∈ p

−1(y), where the multiplication by a complex number
is given by the complex vector space structure on p

−1(y).

• s+ t : Y −→ E to be be the function that assigns to an element y the
element (s + t)(y) = s(y) + t(y) ∈ p

−1(y), where the addition is given
by the complex vector space structure on p

−1(y).

1.27.1 Excercise. (1) Show that zs : Y −→ E and s + t : Y −→ E are
continuous functions. Conclude that these functions belong to Γ(p, Y ).

(2) Show that the above operations define a complex vector space structure
on Γ(p, Y ).

1.27.2 Excercise. Let p : E −→ X and q : F −→ X be vector bundles.
For any section s ∈ Γ(Hom(p, q), X), the elements s(x) ∈ Hom(p, q)−1(x) =
hom(p−1(x), q−1(x)) is simply a homomorphism s(x) : p−1(x) −→ q

−1(x).

(1) Show that the function α(s) : E −→ F that assigns to a point e ∈
p
−1(x) the point s(x)(e) ∈ q

−1(x) is continuous.

(2) Conclude that there is a bijection between the set Γ(Hom(p, q), X) and
the set of bundle maps between E and F .
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