
Lecture 6

1.28 Vector bundles and maps

Let f : Y −→ X be a continuous map. The pull-back operation can be used
to define a function:

Vect(X) � (p : E −→ X) �→ (f ∗
p : F −→ Y ) ∈ Vect(Y )

which we are going to denote by the symbol Vect(f) : Vect(X) −→ Vect(Y ).

1.28.1 Excercise. Let p : E −→ X and q : F −→ X be complex vector
bundles and f : Y −→ X be a continuous map. Show that:

(1) Vect(f)(p⊕q) = Vect(f)(p)⊕Vect(f)(q), i.e, f ∗(p⊕q) and f
∗(p)⊕f

∗(q)
are isomorphic.

(2) Vect(f)(n) = n, for n ≥ 0.

(3) Vect(f)(p⊗q) = Vect(f)(p)⊗Vect(f)(q), i.e, f ∗(p⊗q) and f
∗(p)⊗f

∗(q)
are isomorphic.

It follows from the above exercise that Vect(f) induces a unique ring
homomorphism K(f) : K(X) −→ K(Y ) for which the following diagram
commutes:

Vect(X) ��

Vect(f)

��

�Vect(X) K(X)

K(f)

��
Vect(Y ) �� �Vect(Y ) K(Y )

The homomorphism K(f) : K(X) −→ K(Y ) takes an element p−q in K(X)
to an element f ∗

p− f
∗
q in K(Y ).

1.28.2 Excercise. Let g : Z −→ Y and f : Y −→ X be continuous maps.
Show:

(1) Vect(fg) = Vect(g)Vect(f);

(2) Vect(id) = id;

(3) K(fg) = K(g)K(f);

(4) K(id) = id;

(5) Conclude that if f : Y −→ X is an isomorphism, then so are Vect(f)
and K(f).
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1.29 Homotopical properties I

It turns out that K(−) not only transforms isomorphisms into isomorphisms,
but also homotopy equivalences.

1.29.1 Theorem. Let Y be a compact space and f, g : Y −→ X be continu-

ous maps. If f and g are homotopic, then Vect(f) = Vect(g).

For the proof we need two lemmas:

1.29.2 Lemma. Let p : E −→ X be a vector bundle. Assume that X is

compact and Y ⊂ X is a closed subset. Then any section s ∈ Γ(p, Y ) can be

extended to a section ŝ ∈ Γ(p,X), i.e., the restriction function Γ(p,X) −→
Γ(p, Y ) is onto.

Proof. Step 1. Assume first that p is the product bundle n given by the
projection X × Cn −→ X. In this case consider the composition of the
section s : Y −→ Y × Cn and the projection Y × Cn −→ Cn which we
denote by f . Since X is compact, according to 1.9.9.(2), there is a function
g : X −→ Cn for which g(y) = f(y) if y ∈ Y . Define ŝ : X −→ X ×Cn by
the formula ŝ(x) = (x, g(x)). It is then clear that ŝ is the desired section.

Step 2. For any x ∈ X, let us choose an open subset x ∈ Ux ⊂ X over which
p is trivial. Let φx : Ux×Cn −→ p

−1(Ux) be a trivialization of p over Ux. Let
hx : X −→ I be a function such that hx(x) = 0 and hx(X \ Ux) = 1. Such
a function exists by 1.9.9.(1). Let Vx = h

−1
x ([0, 1/2)) and Ux = h

−1
x ([0, 1/2]).

Note that Vx is a closed subset of X over which p is the product bundle
n. According to step 1, there is then a section sx ∈ Γ(p, Vx) such that
sx(y) = s(y) for any y ∈ Y ∩ Vx.

Since X is compact we can choose a sequence x1, . . . , xk of points in X

for which X =
�k

i=1 Vxi . We use the same symbol sxi ∈ Γ(p, Vxi) to denote
the restriction of sxi to Vxi ⊂ Vxi .

Let {fi : X −→ I}1≤i≤k be a sequence of maps such that fi(x) = 0 if
x �∈ Vxi and Σk

i=1fi(x) = 1 for any x ∈ X. Such maps exist by 1.9.9.(3).
Note that, for 1 ≤ i ≤ k, the following formula describes a section in Γ(p,X)
which we denote by si ∈ Γ(p,X):

X � x �→
�
fi(x)sxi(x) if x ∈ Vxi

0 if x �∈ Vxi

Define the section (ŝ : X −→ E) ∈ Γ(X, p) by the formula:

ŝ(x) := Σk
i=1si

Note that if x ∈ Y , then ŝ(x) := Σk
i=1si(x) = s(x).
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If p : E −→ X is a vector bundle and Y ⊂ X is a subspace. The pull-back
of p along the inclusion Y ⊂ X is denoted by p|Y : E|Y −→ Y .

1.29.3 Lemma. Let p : E −→ X and q : F −→ X be vector bundles.

Assume that X is compact and Y ⊂ X is a closed subset. If p|Y and q|Y are

isomorphic, then there is an open subset Y ⊂ U ⊂ X for which p|U and q|U
are isomorphic.

Proof. Recall that a bundle map between p|Y and q|Y corresponds to a sec-
tion in Γ(Hom(p, q), Y ). Let s be a such a section that corresponds to an
isomorphism between p|Y and q|Y . By Lemma 1.29.2, there is a section
ŝ ∈ Γ(X,Hom(p, q)) such that ŝ(y) = s(y) for any y ∈ Y . Define:

U = {x ∈ X | ŝ(x) ∈ Hom(p, q)−1(x) = hom(p−1(x), q−1(y)) is an iso}

1.29.4 Excercise. Show that the set U is open in X.

By definition, the section ŝ ∈ Γ(U,Hom(p, q)) gives an isomorphism be-
tween p|U and q|U .

We can now prove the theorem.

Proof of Theorem 1.29.1. To prove the theorem we need to show that for
any complex vector bundle p : E −→ X, the vector bundles f ∗

p : F0 −→ Y

and g
∗
p : F1 −→ Y are isomorphic. Let H : Y × I −→ X be a homotopy

betweenf and g, i.e., H is a continuous function such that H(y, 0) = f(y)
and H(y, 1) = g(y). For t ∈ I, let ht : Y −→ X be the map given by the
formula ht(y) = H(y, t). We are going to study the following function of sets
which we denote by α : I −→ Vect(Y ):

I � t �→ α(t) := h
∗
tp ∈ Vect(Y )

We think about Vect(Y ) as a discreet topological space and we claim that
the above function is continuous. Note that if this is the case then, since I

is path connected, the image of this map has to be one point in the discreet
space Vect(Y ). This would shows that f ∗ = h

∗
0p and g

∗ = h
∗
1p are isomorphic

and prove the theorem.
To prove our claim we need to show that α−1(q) is an open subset of I.

If this set is empty then it is open. Assume that α−1(q) is not empty and let
t ∈ I be such that α(t) = q, i.e., q is isomorphic to h

∗
tp. We need to show

that there is some � > 0 for which the open interval (t − �, t + �) ⊂ α
−1(q),

i.e, for any s ∈ (t− �, t+ �), h∗
sp is isomorphic to h

∗
tp.

Consider the following two maps:

H : Y × I −→ X Y × I
pr ��

G

��Y
ht �� X
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and the pull-back vector bundles H∗
p and G

∗
p. Note that the vector bundles

H
∗
p|Y×{t} andG

∗
p|Y×{t} are isomorphic to h∗

tp. It follows from Lemma 1.29.3,
that there is an open subset Y ×{t} ⊂ U ⊂ Y ×I such that H∗

p|U and G
∗
p|U

are isomorphic. Since Y is compact there is � > 0 for which Y ×(t−�, t+�) ⊂
U . It then follows that the following restricted bundles are also isomorphic:

H
∗
p|Y×(t−�,t+�) G

∗
p|Y×(t−�,t+�)

It follows that for any s ∈ (t− �, t+ �) the bundles H∗
p|Y×{s} and G

∗
p|Y×{s}

are isomorphic too. Notice that H∗
p|Y×{s} is h∗

sp and G
∗
p|Y×{s} is h∗

tp. We
can conclude that for any s ∈ (t − �, t + �), the bundles h

∗
sp and h

∗
tp are

isomorphic, which is what we aimed to prove.

Theorem 1.29.1 has a lot of important consequences:

1.29.5 Corollary. (1) If f : Y −→ X is a homotopy equivalence between

compact spaces, then Vect(f) : Vect(X) −→ Vect(Y ) is a bijection.

(2) If X is a contractible and compact space, then Vect(X) is isomorphic

to N and any vector bundle over X is isomorphic to the product bundle

n for some n ∈ N.

(3) Any vector bundle over a non-empty, compact, and convex subset in Rl

is isomorphic to the product bundle n for some n ∈ N.

Proof. (1): Let g : X −→ Y be such that gf is homotopic to idY and fg is
homotopic to idX . Recall that Vect(gf) = Vect(f)Vect(g) and Vect(fg) =
Vect(g)Vect(f). Thus according to 1.29.1, we have:

id = Vect(id) = Vect(gf) = Vect(f)Vect(g)

id = Vect(id) = Vect(fg) = Vect(g)Vect(f)

The functions Vect(f) and Vect(g) are therefore bijections.

(2): IfX is contractible, then the mapX −→ D
0 is a homotopy equivalence.

It follows from statement (1) that the induced function N = Vect(D0) −→
Vect(X) is a bijection.

(3): This is a consequence of statement (2) since any non-empty convex
subset of Rl is contractible

The above statements about vector bundle imply directly the correspond-
ing statements for K-theory:

1.29.6 Corollary. (1) Let Y be a compact space and f, g : Y −→ X be

continuous maps. If f and g are homotopic, then K(f) = K(g).
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(2) If f : Y −→ X is a homotopy equivalence between compact spaces, then

K(f) : K(X) −→ K(Y ) is an isomorphism of commutative rings.

(3) If X is a is a contractible and compact space, then K(X) is isomorphic

to Z.

(4) If X is a non-empty, compact, and convex subset in Rl
, then K(X) =

Z.

1.30 Rank of a vector bundle

Let p : E −→ X be a complex vector bundle. A point x ∈ X can be identified
with a map denoted by the same symbol x : D0 −→ X. Using this map we
can define the function rankx : Vect(X) −→ Vect(D0) = N by the formula:

rankx(p) := x
∗
p = dim(p−1(x))

Extend this definition to the function denoted by the same symbol rankx :
K(X) −→ K(D0) = Z.

The rank is constant on the path-components of X:

1.30.1 Proposition. Let p : E −→ X be a complex vector bundle. If x and

y belong to the same path component of X, then:

rankx(p) = ranky(p)

Proof. If x and y belong to the same path component of X, then the maps
x, y : D0 −→ X are homotopic. The proposition then follows from 1.29.1.
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