Lecture 6

1.28 Vector bundles and maps

Let f:Y — X be a continuous map. The pull-back operation can be used
to define a function:

Vect( X))o (p: E— X) = (f'p: F—Y) € Vect(Y)

which we are going to denote by the symbol Vect(f) : Vect(X) — Vect(Y).

1.28.1 Ezcercise. Let p : E — X and ¢ : FF — X be complex vector
bundles and f:Y — X be a continuous map. Show that:

(1) Vect(f)(p®q) = Vect(f)(p)®Vect(f)(q), i-e, f*(pDq) and f*(p)® f*(q)
are isomorphic.

(2) Vect(f)(n) =n, for n > 0.
(3) Vect(f)(p®q) = Vect(f)(p)@Vect(f)(q), ie, f*(p®q) and f*(p)® f*(q)

are isomorphic.

It follows from the above exercise that Vect(f) induces a unique ring
homomorphism K(f) : K(X) — K(Y) for which the following diagram
commutes:

Veet(X) — Vet (%) — K (X)
Vect(f)l K(f)
Vect(Y) —— Vgt(\Y) — K(Y)

The homomorphism K(f) : K(X) — K(Y) takes an element p—q in K(X)
to an element f*p — f*q in K(Y).

1.28.2 FExcercise. Let g : Z — Y and f : Y — X be continuous maps.
Show:

and K(f).
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1.29 Homotopical properties I

It turns out that K (—) not only transforms isomorphisms into isomorphisms,
but also homotopy equivalences.

1.29.1 Theorem. LetY be a compact space and f,g:Y — X be continu-
ous maps. If [ and g are homotopic, then Vect(f) = Vect(g).

For the proof we need two lemmas:

1.29.2 Lemma. Let p : E — X be a vector bundle. Assume that X is
compact and Y C X is a closed subset. Then any section s € T'(p,Y") can be
extended to a section § € I'(p, X), i.e., the restriction function I'(p, X) —
[(p,Y) is onto.

Proof. Step 1. Assume first that p is the product bundle n given by the
projection X x C" — X. In this case consider the composition of the
section s : Y — Y x C" and the projection ¥ x C* — C" which we
denote by f. Since X is compact, according to 1.9.9.(2), there is a function
g: X — C" for which g(y) = f(y) if y € Y. Define § : X — X x C" by
the formula $(x) = (x, g(z)). It is then clear that § is the desired section.

Step 2. For any = € X, let us choose an open subset x € U, C X over which
pis trivial. Let ¢, : U, x C* — p~(U,) be a trivialization of p over U,. Let
h, : X — I be a function such that h,(z) = 0 and h,(X \ U,) = 1. Such
a function exists by 1.9.9.(1). Let V, = h;*([0,1/2)) and U, = h;'([0,1/2)).
Note that V is a closed subset of X over which p is the product bundle
n. According to step 1, there is then a section s, € I'(p,V,) such that
5.(y) = s(y) for any y € Y N V.

Since X is compact we can choose a sequence zq, ..., x; of points in X
for which X = (J¥, V,,. We use the same symbol s,, € T'(p, V4,) to denote
the restriction of s,, to V,, C V4.

Let {fi : X — I}1<i<k be a sequence of maps such that f;(z) = 0 if
r ¢ V,, and ¥¥_ fi(x) = 1 for any x € X. Such maps exist by 1.9.9.(3).
Note that, for 1 < i < k, the following formula describes a section in I'(p, X)
which we denote by s; € T'(p, X):

X S o fi(w)sq, () %fac eV,
0 ifx gV,

Define the section (5 : X — E) € I'(X, p) by the formula:
3(z) == ¥F s

Note that if z € Y, then 3(z) := XF_ s;(x) = s(x). O
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Ifp: F — X isavector bundle and Y C X is a subspace. The pull-back
of p along the inclusion Y C X is denoted by ply : Ely — Y.

1.29.3 Lemma. Let p : £ — X and q : F — X be vector bundles.
Assume that X is compact and' Y C X is a closed subset. If ply and qly are
isomorphic, then there is an open subset Y C U C X for which p|ly and q|y
are isomorphic.

Proof. Recall that a bundle map between p|y and ¢|y corresponds to a sec-
tion in I'(Hom(p, q),Y’). Let s be a such a section that corresponds to an
isomorphism between p|y and ¢|y. By Lemma 1.29.2, there is a section
s € I'(X,Hom(p, q)) such that s(y) = s(y) for any y € Y. Define:

U={recX|3)ecHom(p,q) () =hom(p ' (x),q (y)) is an iso}

1.29.4 Excercise. Show that the set U is open in X.

By definition, the section § € T'(U, Hom(p, ¢)) gives an isomorphism be-
tween ply and q|y. O

We can now prove the theorem.

Proof of Theorem 1.29.1. To prove the theorem we need to show that for
any complex vector bundle p : £ — X, the vector bundles f*p: Fp — Y
and g*p : F1 — Y are isomorphic. Let H : Y x I — X be a homotopy
betweenf and g, i.e., H is a continuous function such that H(y,0) = f(y)
and H(y,1) = g(y). Fort € I, let hy : Y — X be the map given by the
formula h:(y) = H(y,t). We are going to study the following function of sets
which we denote by a : I — Vect(Y):

I>t— at) = hip € Vect(Y)

We think about Vect(Y) as a discreet topological space and we claim that
the above function is continuous. Note that if this is the case then, since I
is path connected, the image of this map has to be one point in the discreet
space Vect(Y'). This would shows that f* = hp and g* = hjp are isomorphic
and prove the theorem.

To prove our claim we need to show that a='(g) is an open subset of I.
If this set is empty then it is open. Assume that a~!(q) is not empty and let
t € I be such that a(t) = ¢, i.e., ¢ is isomorphic to h;p. We need to show
that there is some ¢ > 0 for which the open interval (t — ¢, +¢) C a'(q),
i.e, for any s € (t —€,t + €), hip is isomorphic to h]p.

Consider the following two maps:

H:YxI—X VxI-2ay-lx
\‘~G
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and the pull-back vector bundles H*p and G*p. Note that the vector bundles
H*p|y><{t} and G*ply « 1} are isomorphic to h;p. It follows from Lemma 1.29.3,
that there is an open subset Y x {t} C U C Y x I such that H*p|y and G*p|y
are isomorphic. Since Y is compact there is € > 0 for which Y x (t—¢,t+¢) C
U. It then follows that the following restricted bundles are also isomorphic:

H*p‘YX(t—E,t—&-e) G*p|Y><(t—e,t+e)

It follows that for any s € (t —€,t +¢€) the bundles H*ply (s} and G*ply s}
are isomorphic too. Notice that H*ply (s is hip and G*ply (s is hip. We
can conclude that for any s € (¢t — €,t + €), the bundles hlp and h;p are
isomorphic, which is what we aimed to prove. O]

Theorem 1.29.1 has a lot of important consequences:

1.29.5 Corollary. (1) If f:Y — X is a homotopy equivalence between
compact spaces, then Vect(f) : Vect(X) — Vect(Y) is a bijection.

(2) If X is a contractible and compact space, then Vect(X) is isomorphic
to N and any vector bundle over X 1is isomorphic to the product bundle
n for some n € N.

(3) Any vector bundle over a non-empty, compact, and convex subset in R!
15 1somorphic to the product bundle n for some n € N.

Proof. (1): Let g: X — Y be such that gf is homotopic to idy and fg is
homotopic to idyx. Recall that Vect(gf) = Vect(f)Vect(g) and Vect(fg) =
Vect(g)Vect(f). Thus according to 1.29.1, we have:

id = Vect(id) = Vect(gf) = Vect(f)Vect(g)

id = Vect(id) = Vect(fg) = Vect(g)Vect(f)
The functions Vect(f) and Vect(g) are therefore bijections.

(2): If X is contractible, then the map X — D is a homotopy equivalence.
It follows from statement (1) that the induced function N = Vect(D°) —
Vect(X) is a bijection.

(3): This is a consequence of statement (2) since any non-empty convex
subset of R! is contractible O

The above statements about vector bundle imply directly the correspond-
ing statements for K-theory:

1.29.6 Corollary. (1) LetY be a compact space and f,g : Y — X be
continuous maps. If f and g are homotopic, then K(f) = K(g).
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(2) If f: Y — X is a homotopy equivalence between compact spaces, then
K(f): K(X) — K(Y) is an isomorphism of commutative rings.

(8) If X is ais a contractible and compact space, then K(X) is isomorphic
to 7.

(4) If X is a non-empty, compact, and convex subset in R, then K(X) =
7.

1.30 Rank of a vector bundle

Let p : E — X be a complex vector bundle. A point x € X can be identified
with a map denoted by the same symbol z : D° — X. Using this map we
can define the function rank, : Vect(X) — Vect(D") = N by the formula:

rank, (p) := 2*p = dim(p~'(z))

Extend this definition to the function denoted by the same symbol rank, :
K(X) — K(D% =Z.
The rank is constant on the path-components of X:

1.30.1 Proposition. Let p: E — X be a complex vector bundle. If x and
y belong to the same path component of X, then:

rank, (p) = rank,(p)

Proof. If x and y belong to the same path component of X, then the maps
x,y : DY — X are homotopic. The proposition then follows from 1.29.1. [
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