Lecture 6

1.28 Vector bundles and maps

Let $f: Y \longrightarrow X$ be a continuous map. The pull-back operation can be used to define a function:

$$
\operatorname{Vect}(X) \ni(p: E \longrightarrow X) \mapsto\left(f^{*} p: F \longrightarrow Y\right) \in \operatorname{Vect}(Y)
$$

which we are going to denote by the symbol $\operatorname{Vect}(f): \operatorname{Vect}(X) \longrightarrow \operatorname{Vect}(Y)$. 1.28.1 Excercise. Let $p: E \longrightarrow X$ and $q: F \longrightarrow X$ be complex vector bundles and $f: Y \longrightarrow X$ be a continuous map. Show that:
(1) $\operatorname{Vect}(f)(p \oplus q)=\operatorname{Vect}(f)(p) \oplus \operatorname{Vect}(f)(q)$, i.e, $f^{*}(p \oplus q)$ and $f^{*}(p) \oplus f^{*}(q)$ are isomorphic.
(2) $\operatorname{Vect}(f)(\mathbf{n})=\mathbf{n}$, for $n \geq 0$.
(3) $\operatorname{Vect}(f)(p \otimes q)=\operatorname{Vect}(f)(p) \otimes \operatorname{Vect}(f)(q)$, i.e, $f^{*}(p \otimes q)$ and $f^{*}(p) \otimes f^{*}(q)$ are isomorphic.

It follows from the above exercise that $\operatorname{Vect}(f)$ induces a unique ring homomorphism $K(f): K(X) \longrightarrow K(Y)$ for which the following diagram commutes:

The homomorphism $K(f): K(X) \longrightarrow K(Y)$ takes an element $p-q$ in $K(X)$ to an element $f^{*} p-f^{*} q$ in $K(Y)$.
1.28.2 Excercise. Let $g: Z \longrightarrow Y$ and $f: Y \longrightarrow X$ be continuous maps. Show:
(1) $\operatorname{Vect}(f g)=\operatorname{Vect}(g) \operatorname{Vect}(f)$;
(2) $\operatorname{Vect}(\mathrm{id})=\mathrm{id}$;
(3) $K(f g)=K(g) K(f)$;
(4) $K(\mathrm{id})=\mathrm{id}$;
(5) Conclude that if $f: Y \longrightarrow X$ is an isomorphism, then so are $\operatorname{Vect}(f)$ and $K(f)$.

1.29 Homotopical properties I

It turns out that $K(-)$ not only transforms isomorphisms into isomorphisms, but also homotopy equivalences.
1.29.1 Theorem. Let Y be a compact space and $f, g: Y \longrightarrow X$ be continuous maps. If f and g are homotopic, then $\operatorname{Vect}(f)=\operatorname{Vect}(g)$.

For the proof we need two lemmas:
1.29.2 Lemma. Let $p: E \longrightarrow X$ be a vector bundle. Assume that X is compact and $Y \subset X$ is a closed subset. Then any section $s \in \Gamma(p, Y)$ can be extended to a section $\hat{s} \in \Gamma(p, X)$, i.e., the restriction function $\Gamma(p, X) \longrightarrow$ $\Gamma(p, Y)$ is onto.

Proof. Step 1. Assume first that p is the product bundle \mathbf{n} given by the projection $X \times \mathbf{C}^{n} \longrightarrow X$. In this case consider the composition of the section $s: Y \longrightarrow Y \times \mathbf{C}^{n}$ and the projection $Y \times \mathbf{C}^{n} \longrightarrow \mathbf{C}^{n}$ which we denote by f. Since X is compact, according to 1.9.9.(2), there is a function $g: X \longrightarrow \mathbf{C}^{n}$ for which $g(y)=f(y)$ if $y \in Y$. Define $\hat{s}: X \longrightarrow X \times \mathbf{C}^{n}$ by the formula $\hat{s}(x)=(x, g(x))$. It is then clear that \hat{s} is the desired section.
Step 2. For any $x \in X$, let us choose an open subset $x \in U_{x} \subset X$ over which p is trivial. Let $\phi_{x}: U_{x} \times \mathbf{C}^{n} \longrightarrow p^{-1}\left(U_{x}\right)$ be a trivialization of p over U_{x}. Let $h_{x}: X \longrightarrow I$ be a function such that $h_{x}(x)=0$ and $h_{x}\left(X \backslash U_{x}\right)=1$. Such a function exists by 1.9.9.(1). Let $V_{x}=h_{x}^{-1}([0,1 / 2))$ and $\overline{U_{x}}=h_{x}^{-1}([0,1 / 2])$. Note that $\overline{V_{x}}$ is a closed subset of X over which p is the product bundle n. According to step 1 , there is then a section $s_{x} \in \Gamma\left(p, \overline{V_{x}}\right)$ such that $s_{x}(y)=s(y)$ for any $y \in Y \cap \overline{V_{x}}$.

Since X is compact we can choose a sequence x_{1}, \ldots, x_{k} of points in X for which $X=\bigcup_{i=1}^{k} V_{x_{i}}$. We use the same symbol $s_{x_{i}} \in \Gamma\left(p, V_{x_{i}}\right)$ to denote the restriction of $s_{x_{i}}$ to $V_{x_{i}} \subset \overline{V_{x_{i}}}$.

Let $\left\{f_{i}: X \longrightarrow I\right\}_{1 \leq i \leq k}$ be a sequence of maps such that $f_{i}(x)=0$ if $x \notin V_{x_{i}}$ and $\sum_{i=1}^{k} f_{i}(x)=1$ for any $x \in X$. Such maps exist by 1.9.9.(3). Note that, for $1 \leq i \leq k$, the following formula describes a section in $\Gamma(p, X)$ which we denote by $s_{i} \in \Gamma(p, X)$:

$$
X \ni x \mapsto \begin{cases}f_{i}(x) s_{x_{i}}(x) & \text { if } x \in V_{x_{i}} \\ 0 & \text { if } x \notin V_{x_{i}}\end{cases}
$$

Define the section $(\hat{s}: X \longrightarrow E) \in \Gamma(X, p)$ by the formula:

$$
\hat{s}(x):=\sum_{i=1}^{k} s_{i}
$$

Note that if $x \in Y$, then $\hat{s}(x):=\sum_{i=1}^{k} s_{i}(x)=s(x)$.

If $p: E \longrightarrow X$ is a vector bundle and $Y \subset X$ is a subspace. The pull-back of p along the inclusion $Y \subset X$ is denoted by $\left.p\right|_{Y}:\left.E\right|_{Y} \longrightarrow Y$.
1.29.3 Lemma. Let $p: E \longrightarrow X$ and $q: F \longrightarrow X$ be vector bundles. Assume that X is compact and $Y \subset X$ is a closed subset. If $\left.p\right|_{Y}$ and $\left.q\right|_{Y}$ are isomorphic, then there is an open subset $Y \subset U \subset X$ for which $\left.p\right|_{U}$ and $\left.q\right|_{U}$ are isomorphic.

Proof. Recall that a bundle map between $\left.p\right|_{Y}$ and $\left.q\right|_{Y}$ corresponds to a section in $\Gamma(\operatorname{Hom}(p, q), Y)$. Let s be a such a section that corresponds to an isomorphism between $\left.p\right|_{Y}$ and $\left.q\right|_{Y}$. By Lemma 1.29.2, there is a section $\hat{s} \in \Gamma(X, \operatorname{Hom}(p, q))$ such that $\hat{s}(y)=s(y)$ for any $y \in Y$. Define:

$$
U=\left\{x \in X \mid \hat{s}(x) \in \operatorname{Hom}(p, q)^{-1}(x)=\operatorname{hom}\left(p^{-1}(x), q^{-1}(y)\right) \text { is an iso }\right\}
$$

1.29.4 Excercise. Show that the set U is open in X.

By definition, the section $\hat{s} \in \Gamma(U, \operatorname{Hom}(p, q))$ gives an isomorphism between $\left.p\right|_{U}$ and $\left.q\right|_{U}$.

We can now prove the theorem.
Proof of Theorem 1.29.1. To prove the theorem we need to show that for any complex vector bundle $p: E \longrightarrow X$, the vector bundles $f^{*} p: F_{0} \longrightarrow Y$ and $g^{*} p: F_{1} \longrightarrow Y$ are isomorphic. Let $H: Y \times I \longrightarrow X$ be a homotopy between f and g, i.e., H is a continuous function such that $H(y, 0)=f(y)$ and $H(y, 1)=g(y)$. For $t \in I$, let $h_{t}: Y \longrightarrow X$ be the map given by the formula $h_{t}(y)=H(y, t)$. We are going to study the following function of sets which we denote by $\alpha: I \longrightarrow \operatorname{Vect}(Y)$:

$$
I \ni t \mapsto \alpha(t):=h_{t}^{*} p \in \operatorname{Vect}(Y)
$$

We think about $\operatorname{Vect}(Y)$ as a discreet topological space and we claim that the above function is continuous. Note that if this is the case then, since I is path connected, the image of this map has to be one point in the discreet space $\operatorname{Vect}(Y)$. This would shows that $f^{*}=h_{0}^{*} p$ and $g^{*}=h_{1}^{*} p$ are isomorphic and prove the theorem.

To prove our claim we need to show that $\alpha^{-1}(q)$ is an open subset of I. If this set is empty then it is open. Assume that $\alpha^{-1}(q)$ is not empty and let $t \in I$ be such that $\alpha(t)=q$, i.e., q is isomorphic to $h_{t}^{*} p$. We need to show that there is some $\epsilon>0$ for which the open interval $(t-\epsilon, t+\epsilon) \subset \alpha^{-1}(q)$, i.e, for any $s \in(t-\epsilon, t+\epsilon), h_{s}^{*} p$ is isomorphic to $h_{t}^{*} p$.

Consider the following two maps:

$$
H: Y \times I \longrightarrow X \quad Y \times I \xrightarrow{\mathrm{pr}} Y \xrightarrow{h_{t}} X
$$

and the pull-back vector bundles $H^{*} p$ and $G^{*} p$. Note that the vector bundles $\left.H^{*} p\right|_{Y \times\{t\}}$ and $\left.G^{*} p\right|_{Y \times\{t\}}$ are isomorphic to $h_{t}^{*} p$. It follows from Lemma 1.29.3, that there is an open subset $Y \times\{t\} \subset U \subset Y \times I$ such that $\left.H^{*} p\right|_{U}$ and $\left.G^{*} p\right|_{U}$ are isomorphic. Since Y is compact there is $\epsilon>0$ for which $Y \times(t-\epsilon, t+\epsilon) \subset$ U. It then follows that the following restricted bundles are also isomorphic:

$$
\left.\left.H^{*} p\right|_{Y \times(t-\epsilon, t+\epsilon)} \quad G^{*} p\right|_{Y \times(t-\epsilon, t+\epsilon)}
$$

It follows that for any $s \in(t-\epsilon, t+\epsilon)$ the bundles $\left.H^{*} p\right|_{Y \times\{s\}}$ and $\left.G^{*} p\right|_{Y \times\{s\}}$ are isomorphic too. Notice that $\left.H^{*} p\right|_{Y \times\{s\}}$ is $h_{s}^{*} p$ and $\left.G^{*} p\right|_{Y \times\{s\}}$ is $h_{t}^{*} p$. We can conclude that for any $s \in(t-\epsilon, t+\epsilon)$, the bundles $h_{s}^{*} p$ and $h_{t}^{*} p$ are isomorphic, which is what we aimed to prove.

Theorem 1.29.1 has a lot of important consequences:
1.29.5 Corollary. (1) If $f: Y \longrightarrow X$ is a homotopy equivalence between compact spaces, then $\operatorname{Vect}(f): \operatorname{Vect}(X) \longrightarrow \operatorname{Vect}(Y)$ is a bijection.
(2) If X is a contractible and compact space, then $\operatorname{Vect}(X)$ is isomorphic to \mathbf{N} and any vector bundle over X is isomorphic to the product bundle \mathbf{n} for some $n \in \mathbf{N}$.
(3) Any vector bundle over a non-empty, compact, and convex subset in \mathbf{R}^{l} is isomorphic to the product bundle \mathbf{n} for some $n \in \mathbf{N}$.

Proof. (1): Let $g: X \longrightarrow Y$ be such that $g f$ is homotopic to id_{Y} and $f g$ is homotopic to id_{X}. Recall that $\operatorname{Vect}(g f)=\operatorname{Vect}(f) \operatorname{Vect}(g)$ and $\operatorname{Vect}(f g)=$ $\operatorname{Vect}(g) \operatorname{Vect}(f)$. Thus according to 1.29.1, we have:

$$
\begin{aligned}
& \mathrm{id}=\operatorname{Vect}(\mathrm{id})=\operatorname{Vect}(g f)=\operatorname{Vect}(f) \operatorname{Vect}(g) \\
& \mathrm{id}=\operatorname{Vect}(\mathrm{id})=\operatorname{Vect}(f g)=\operatorname{Vect}(g) \operatorname{Vect}(f)
\end{aligned}
$$

The functions $\operatorname{Vect}(f)$ and $\operatorname{Vect}(g)$ are therefore bijections.
(2): If X is contractible, then the map $X \longrightarrow D^{0}$ is a homotopy equivalence. It follows from statement (1) that the induced function $\mathbf{N}=\operatorname{Vect}\left(D^{0}\right) \longrightarrow$ $\operatorname{Vect}(X)$ is a bijection.
(3): This is a consequence of statement (2) since any non-empty convex subset of \mathbf{R}^{l} is contractible

The above statements about vector bundle imply directly the corresponding statements for K-theory:
1.29.6 Corollary. (1) Let Y be a compact space and $f, g: Y \longrightarrow X$ be continuous maps. If f and g are homotopic, then $K(f)=K(g)$.
(2) If $f: Y \longrightarrow X$ is a homotopy equivalence between compact spaces, then $K(f): K(X) \longrightarrow K(Y)$ is an isomorphism of commutative rings.
(3) If X is a is a contractible and compact space, then $K(X)$ is isomorphic to \mathbf{Z}.
(4) If X is a non-empty, compact, and convex subset in \mathbf{R}^{l}, then $K(X)=$ Z.

1.30 Rank of a vector bundle

Let $p: E \longrightarrow X$ be a complex vector bundle. A point $x \in X$ can be identified with a map denoted by the same symbol $x: D^{0} \longrightarrow X$. Using this map we can define the function $\operatorname{rank}_{x}: \operatorname{Vect}(X) \longrightarrow \operatorname{Vect}\left(D^{0}\right)=\mathbf{N}$ by the formula:

$$
\operatorname{rank}_{x}(p):=x^{*} p=\operatorname{dim}\left(p^{-1}(x)\right)
$$

Extend this definition to the function denoted by the same symbol rank_{x} : $K(X) \longrightarrow K\left(D^{0}\right)=\mathbf{Z}$.

The rank is constant on the path-components of X :
1.30.1 Proposition. Let $p: E \longrightarrow X$ be a complex vector bundle. If x and y belong to the same path component of X, then:

$$
\operatorname{rank}_{x}(p)=\operatorname{rank}_{y}(p)
$$

Proof. If x and y belong to the same path component of X, then the maps $x, y: D^{0} \longrightarrow X$ are homotopic. The proposition then follows from 1.29.1.

