Lecture 7

1.31 Clutching functions and homotopical properties II

We define $\operatorname{Vect}_{k}(X)$ to be the subset of $\operatorname{Vect}(X)$ consisting of the equivalence classes of vector bundles whose rank is k.

Consider a map $\pi: D_{-}^{n} \amalg D_{+}^{n} \longrightarrow S^{n}$ given by the formula:

$$
\pi(x)= \begin{cases}\left(x, \sqrt{1-|x|^{2}}\right) & \text { if } x \in D_{+}^{n} \\ \left(x,-\sqrt{1-|x|^{2}}\right) & \text { if } x \in D_{-}^{n}\end{cases}
$$

Note that S^{n} has the quotient topology induced by this map. In this way S^{n} is isomorphic to the quotient of $D_{-}^{n} \coprod D_{+}^{n}$ by the equivalence relation that identifies $x \in S^{n-1} \subset D_{-}^{n}$ with the same point $x \in S^{n-1} \subset D_{+}^{n}$. Let us fix a map $f: S^{n-1} \longrightarrow G L\left(\mathbf{C}^{k}\right)$. Define E_{f} to be the quotient of the space:

$$
\left(D_{-}^{n} \times \mathbf{C}^{k}\right) \coprod\left(D_{+}^{n} \times \mathbf{C}^{k}\right)
$$

by the equivalence relation that identifies $(x, v) \in S^{n-1} \times \mathbf{C}^{k} \subset D_{-}^{n} \times \mathbf{C}^{k}$ with $(x, f(x)(v)) \in S^{n-1} \times \mathbf{C}^{k} \subset D_{+}^{n} \times \mathbf{C}^{k}$. Let $\pi_{f}: E_{f} \longrightarrow S^{n}$ be the map which is given by the projection onto the first component. Note that $\pi_{f}^{-1}=\mathbf{C}^{k}$ is a complex vector space.
1.31.1 Proposition. $\pi_{f}: E_{f} \longrightarrow S^{n}$ is a complex vector bundle.

Consider a map $\pi: D_{-}^{n} \times I \coprod D_{+}^{n} \times I \longrightarrow S^{n} \times I$ given by the formula:

$$
\pi(x, t)= \begin{cases}\left(\left(x, \sqrt{1-|x|^{2}}\right), t\right) & \text { if } x \in D_{+}^{n} \\ \left(\left(x,-\sqrt{1-|x|^{2}}\right), t\right) & \text { if } x \in D_{-}^{n}\end{cases}
$$

Note that $S^{n} \times I$ has the quotient topology induced by π. In this way $S^{n} \times I$ is isomorphic to the quotient of $D_{-}^{n} \times I \coprod D_{+}^{n} \times I$ by the equivalence relation that identifies $(x, t) \in S^{n-1} \times I \subset D_{-}^{n} \times I$ with the same point $(x, t) \in S^{n-1} \times I \subset D_{+}^{n} \times I$

Let us fix a map $H: S^{n-1} \times I \longrightarrow G L\left(\mathbf{C}^{k}\right)$. Define E_{H} to be the quotient of the space:

$$
\left(D_{-}^{n} \times I \times \mathbf{C}^{k}\right) \coprod\left(D_{+}^{n} \times I \times \mathbf{C}^{k}\right)
$$

by the equivalence relation that identifies:

$$
(x, t, v) \in S^{n-1} \times I \times \mathbf{C}^{k} \subset D_{-}^{n} \times I \times \mathbf{C}^{k}
$$

with

$$
(x, t, H(x, t)) \in S^{n-1} \times I \times \mathbf{C}^{k} \subset D_{+}^{n} \times I \times \mathbf{C}^{k}
$$

Let $\pi_{H}: E_{H} \longrightarrow S^{n} \times I$ be the map which is given by the projection onto the first two components. Note that $\pi_{f}^{-1}=\mathbf{C}^{k}$ is a complex vector space.
1.31.2 Proposition. $\pi_{H}: E_{H} \longrightarrow S^{n} \times I$ is a complex vector bundle.

Let $i_{0}, i_{1}: S^{n} \subset S^{n} \times I$ be the inclusions that map x to respectively $i_{0}(x)=(x, 0)$ and $i_{1}(x)=(x, 1)$. Note that the pullback $i_{0}^{*} \pi_{H}$ is a vector bundle isomorphic to $\pi_{H(-, 0)}$. Analogously the pullback $i_{1}^{*} \pi_{H}$ is a vector bundle isomorphic to $\pi_{H(-, 1)}$.
1.31.3 Proposition. Assume that maps $f, g: S^{n-1} \longrightarrow G L\left(\mathbf{C}^{k}\right)$ are homotopic. Then the vector bundles $\pi_{f}: E_{f} \longrightarrow S^{n}$ and $\pi_{g}: E_{g} \longrightarrow S^{n}$ are isomorphic.

Proof. Let $H: S^{n-1} \times I \longrightarrow G L\left(\mathbf{C}^{k}\right)$ be a homotopy between f and g. Consider the induced vector bundle $\pi_{H}: E_{H} \longrightarrow S^{n} \times I$. Since $S^{n} \times I$ is compact and the inclusions $i_{0}, i_{1}: S^{n} \longrightarrow S^{n} \times I$ are homotopic, according to Corollary 1.29 .6 , the pull-backs $i_{0}^{*} \pi_{H}$ and $i_{1}^{*} \pi_{H}$ are isomorphic. As these pull-backs can be identified with $\pi_{f}: E_{f} \longrightarrow S^{n}$ and $\pi_{g}: E_{g} \longrightarrow S^{n}$, the proposition is proven.

According to the above proposition we have a well defined function:

$$
\mathcal{F}_{k}:\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right] \longrightarrow \operatorname{Vect}_{k}\left(S^{n}\right), \quad \mathcal{F}_{k}([f]):=\left(\pi_{f}: E_{f} \longrightarrow S^{n}\right)
$$

1.31.4 Theorem. The function $\mathcal{F}_{k}:\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right] \longrightarrow \operatorname{Vect}_{k}\left(S^{n}\right)$ is a bijection.

To prove the theorem we are going to construct the inverse of \mathcal{F}_{k}. Let $p: E \longrightarrow S^{n}$ be a complex vector bundle. Let $i_{-}: D_{-}^{n} \longrightarrow S^{n}$ and i_{+}: $D_{+}^{n} \longrightarrow S^{n}$ be maps defined by the formulas:

$$
i_{-}(x):=\left(x,-\sqrt{1-\mid x]^{2}}\right), \quad i_{+}(x):=\left(x, \sqrt{1-\mid x]^{2}}\right)
$$

Since D^{n} is contractible, the pullbacks $i_{-}^{*} p: E_{-} \longrightarrow D_{-}^{n}$ and $i_{+}^{*} p: E_{+} \longrightarrow D_{+}^{n}$ are the product bundles. Let us choose isomorphisms:

Define $\mathcal{G}_{k}(p): S^{n-1} \longrightarrow G L\left(\mathbf{C}^{k}\right)$ to be the unique function for which the following equality holds:

$$
\phi^{-1} \psi(x, v)=\left(x, \mathcal{G}_{k}(p)(v)\right)
$$

Explicitly

$$
\mathcal{G}_{k}(p)(x)(v)=\operatorname{pr}_{\mathbf{C}^{k}} \phi^{-1} \psi(x, v)
$$

We claim that the homotopy type of this map $\mathcal{G}_{k}(p): S^{n-1} \longrightarrow G L\left(\mathbf{C}^{k}\right)$ is independent of the choices of the trivializations ψ and ϕ. Assume that instead of ψ, we chose another trivialization:

Consider the composition:

Let $g: D_{-}^{n} \longrightarrow G L\left(\mathbf{C}^{k}\right)$ be the map induced by the isomorphism $\psi^{\prime-1} \psi$. Since $G L\left(\mathbf{C}^{k}\right)$ is path connected and D_{-}^{n} is contractible, the map $g: D_{-}^{n} \longrightarrow$ $G L\left(\mathbf{C}^{k}\right)$ is homotopic to the constant map id : $D_{-}^{n} \longrightarrow G L\left(\mathbf{C}^{k}\right)$ with value the identity element in $G L\left(\mathbf{C}^{k}\right)$. It follows that $g \mathcal{G}_{k}(p)$ and $\mathcal{G}_{k}(p)$ are homotopic. Note however that $g \mathcal{G}_{k}(p)$ is the corresponding map with respect to the trivializations ψ^{\prime} and ϕ of p. Same argument can be used to show independence of the homotopy type of $\mathcal{G}_{k}(p)$ with respect to the trivialization ϕ.

We can conclude that we have a well define function:

$$
\mathcal{G}_{k}: \operatorname{Vect}_{k}\left(S^{n}\right) \longrightarrow\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right]
$$

From the definitions of \mathcal{F}_{k} and \mathcal{G}_{k} it is clear that they are inverse isomorphisms proving Theorem 1.31.4

1.32 The ring structure

The sets $\operatorname{Vect}_{k}\left(S^{n}\right)$, for $k \geq 0$, come with:

- elements $\mathbf{k} \in \operatorname{Vect}_{k}\left(S^{n}\right)$, which correspond to product bundles \mathbf{k} : $S^{n} \times \mathbf{C}^{k} \longrightarrow S^{n}$, for $k \geq 0$;

- multiplicationVect ${ }_{k}\left(S^{n}\right) \times \operatorname{Vect}_{l}\left(S^{n}\right) \ni(p, q) \mapsto p \otimes q \in \operatorname{Vect}_{k l}\left(S^{n}\right)$;

Analogously, the sets $\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right]$, for $k \geq 0$, come with:

- elements $\left[\iota_{k}: S^{n-1} \longrightarrow G L\left(\mathbf{C}^{k}\right)\right]$, which correspond to the constant map whose value is the identity element in $G L\left(\mathbf{C}^{k}\right)$;
- addition:

$$
\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right] \times\left[S^{n-1}, G L\left(\mathbf{C}^{l}\right)\right] \ni(f, g) \mapsto f \oplus g \in\left[S^{n-1}, G L\left(\mathbf{C}^{k+l}\right)\right]
$$

- multiplication

$$
\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right] \times\left[S^{n-1}, G L\left(\mathbf{C}^{l}\right)\right] \ni(f, g) \mapsto f \otimes g \in\left[S^{n-1}, G L\left(\mathbf{C}^{k l}\right)\right]
$$

By direct verification one can show:
1.32.1 Proposition. The functions $\mathcal{F}_{k}:\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right] \longrightarrow \operatorname{Vect}_{k}\left(S^{n}\right)$, for $k \geq 0$, satisfies the following properties:
(1) $\mathcal{F}_{k}\left(\iota_{k}\right)=\mathbf{k}$.
(2) Let $f \in\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right]$ and $g \in\left[S^{n-1}, G L\left(\mathbf{C}^{l}\right)\right]$. Then $\mathcal{F}_{k+l}(f \oplus g)=$ $\mathcal{F}_{k}(f) \oplus \mathcal{F}_{l}(g)$.
(3) Let $f \in\left[S^{n-1}, G L\left(\mathbf{C}^{k}\right)\right]$ and $g \in\left[S^{n-1}, G L\left(\mathbf{C}^{l}\right)\right]$. Then $\mathcal{F}_{k l}(f \otimes g)=$ $\mathcal{F}_{k}(f) \otimes \mathcal{F}_{l}(g)$.
1.32.2 Excercise. Proof the above proposition.

