Lecture 8

1.33 Tautological line bundle over S^{2}

Consider the tautological line bundle $\lambda: E \longrightarrow \mathbf{C} P^{1}=S^{2}$. In this section we are going to identify the clutching function $\mathcal{G}_{1}(\lambda) \in\left[S^{1}, G L(\mathbf{C})\right]$ and study its properties. Note that the group $G L(\mathbf{C})$ can be identified with the multiplicative group of non-zero complex numbers \mathbf{C}^{*}. Let $D_{-} \subset \mathbf{C} P^{1}$ be the subspace of lines in \mathbf{C}^{2} that are generated by vectors of the form $(z, 1)$ for $|z| \leq 1$. The \mathbf{C}-line containing vector $(z, 1)$ is denoted by $L(z, 1)$. Let $D_{+} \subset \mathbf{C} P^{1}$ be the subspace of lines in \mathbf{C}^{2} that are generated by vectors of the form $(1, z)$ for $|z| \leq 1$. The \mathbf{C}-line containing vector $(1, z)$ is denoted by $L(1, z)$. Note that the functions:

$$
\begin{aligned}
& \mathrm{C} \supset D^{2}=\{z| | z \mid \leq 1\} \ni z \mapsto L(z, 1) \in D_{-} \\
& \mathrm{C} \supset D^{2}=\{z| | z \mid \leq 1\} \ni z \mapsto L(1, z) \in D_{+}
\end{aligned}
$$

are isomorphisms. Thus we can think about D_{-}and D_{+}as discs. Note further that $D_{-} \cap D_{+}=\{z \in \mathbf{C}| | z \mid=1\}$ is the circle $S^{1} \subset \mathbf{C}$.

Let $\phi: D_{-}^{2} \times \mathbf{C} \longrightarrow \lambda^{-1}\left(D_{-}\right)$and $\psi: D_{+}^{2} \times \mathbf{C} \longrightarrow \lambda^{-1}\left(D_{+}\right)$be maps defined by the formulas:

$$
\phi(L(z, 1), t):=(L(z, 1), t(z, 1)) \quad \psi(L(1, z), t):=(L(1, z), t(1, z))
$$

These maps are trivializations of λ over the subspaces D_{-}^{2} and D_{+}^{2}. Consider the composition:

$$
S^{1} \times \mathbf{C}=D_{-}^{2} \cap D_{+}^{2} \times \mathbf{C} \xrightarrow{\psi^{-1} \phi} D_{-}^{2} \cap D_{+}^{2} \times \mathbf{C}=S^{1} \times \mathbf{C}
$$

It maps an element $(L(z, 1), t)$ to $(L(1,1 / z), t z)$. Thus the induced map $S^{1} \longrightarrow G L(\mathbf{C})$ is the standard inclusion $S^{1} \subset \mathbf{C}^{*}=G L(\mathbf{C})$. This proves:
1.33.1 Proposition. The element $\mathcal{G}_{1}(\lambda) \in\left[S^{1}, G L(\mathbf{C})\right]$, associated with the tautological bundle $\lambda: E \longrightarrow \mathbf{C} P^{1}=S^{2}$, is represented by the standard inclusion $S^{1} \subset \mathbf{C}^{*}=G L(\mathbf{C})$.

Consider the following vector bundles of rank 2 over $\mathbf{C} P^{1}=S^{2}$:

$$
(\lambda \otimes \lambda) \oplus \mathbf{1} \quad \lambda \oplus \lambda
$$

It follows from the above proposition, that the elements:

$$
\mathcal{G}_{2}((\lambda \otimes \lambda) \oplus \mathbf{1}) \in\left[S^{1}, G L\left(\mathbf{C}^{2}\right)\right] \ni \mathcal{G}_{2}(\lambda \oplus \lambda)
$$

are represented by the following functions:

$$
\begin{aligned}
& S^{1} \ni z \mapsto\left(\begin{array}{cc}
z^{2} & 0 \\
0 & 1
\end{array}\right) \in G L\left(\mathbf{C}^{2}\right) \\
& S^{1} \ni z \mapsto\left(\begin{array}{cc}
z & 0 \\
0 & z
\end{array}\right) \in G L\left(\mathbf{C}^{2}\right)
\end{aligned}
$$

The space $G L\left(\mathbf{C}^{2}\right)$ is connected. Thus there is a path $\omega: I \longrightarrow G L\left(\mathbf{C}^{2}\right)$ such that:

$$
\omega(0)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad \omega(1)=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Note that since $\operatorname{det}(\omega(0))=1$ and $\operatorname{det}(\omega(1))=-1$, these matrices belong to different connected components of $G L\left(\mathbf{R}^{2}\right)$. Thus the fact that we use complex numbers is important. We can use this path to define a homotopy:

$$
H: S^{1} \times I \longrightarrow G L\left(\mathbf{C}^{2}\right), H(z, t):=\left(\begin{array}{cc}
z & 0 \\
0 & 1
\end{array}\right) \omega(t)\left(\begin{array}{cc}
1 & 0 \\
0 & z
\end{array}\right) \omega(t)
$$

By direct verification one can check that:

$$
H(z, 0)=\left(\begin{array}{cc}
z & 0 \\
0 & z
\end{array}\right) \quad H(z, 1)=\left(\begin{array}{cc}
z^{2} & 0 \\
0 & 1
\end{array}\right)
$$

We can thus conclude that:
1.33.2 Proposition. Let $\lambda: E \longrightarrow \mathbf{C} P^{1}=S^{2}$ be the tautological bundle. Then the bundles $(\lambda \otimes \lambda) \oplus \mathbf{1}$ and $\lambda \oplus \lambda$ are isomorphic.

1.34 Statement of the periodicity theorem

Consider the map $p: S^{2} \longrightarrow D^{0}$. It induces a homomorphism of rings $K(p): K\left(D^{0}\right) \longrightarrow K\left(S^{2}\right)$. Recall that $K\left(D^{0}\right)$ is isomorphic to \mathbf{Z} via the rank map. The homomorphism $K(p)$ assigns to $k \geq 0$ the element in $K\left(S^{2}\right)$ represented by the product bundle \mathbf{k}. Recall that $\lambda_{1}: E \longrightarrow S^{2}=\mathbf{C} P^{1}$ denotes the tautological line bundle (of rank 1). We can use $K(p)$ to define a ring homomorphism:

$$
\mathbf{Z}[T] \ni\left(a_{0}+a_{1} T+\cdots+a_{n} T^{n}\right) \mapsto \mathbf{a}_{\mathbf{0}} \oplus\left(\mathbf{a}_{\mathbf{0}} \otimes \lambda_{1}\right) \oplus \cdots \oplus\left(\mathbf{a}_{\mathbf{0}} \otimes \lambda_{1}^{\otimes n}\right) \in K\left(S^{2}\right)
$$

which we denote by $\Lambda: \mathbf{Z}[T] \longrightarrow K\left(S^{2}\right)$. The polynomial $(T-1)^{2}=$ $T^{2}-2 T+1$ is sent via Λ to $(\lambda \otimes \lambda) \oplus \mathbf{1}-\lambda \oplus \lambda$, which is the zero element
according to Proposition 1.33.2. Thus the homomorphism Λ factors through $\mathbf{Z}[T] /(T-1)^{2} \longrightarrow K\left(S^{2}\right)$, which we also denote by Λ.

Further let X be a compact space. Consider the product $S^{2} \times X$ and the following commutative diagram where the maps p_{1} and p_{2} are the appropriate projections:

By applying K-theory to the above diagram, we get a commutative diagram of rings:

Since $K\left(D^{0}\right)=\mathbf{Z}$, we can use the commutativity of the above diagram to get a ring homomorphism $\Omega: K(X) \otimes_{\mathbf{z}} K\left(S^{2}\right) \longrightarrow K\left(X \times S^{2}\right)$.
1.34.1 Theorem. The following ring homomorphisms are isomorphisms:
$\Lambda: \mathbf{Z}[T] /(T-1)^{2} \longrightarrow K\left(S^{2}\right)$
$\Omega: K(X) \otimes_{\mathbf{z}} K\left(S^{2}\right) \longrightarrow K\left(X \times S^{2}\right)$

1.35 Reduced K-theory

Let X be a space. For any point $x \in X$, we have a rank ring homomorphism: $\operatorname{rank}_{x}: K(X) \longrightarrow \mathbf{Z}$.
1.35.1 Definition. $\tilde{K}(X):=\left\{\xi \in K(X) \mid\right.$ for any $\left.x \in X, \operatorname{rank}_{x}(\xi)=0\right\}$.

Since rank_{x} is a ring homomorphism, $\tilde{K}(X)$ is an ideal in $K(X)$. Thus, if $\xi \in \tilde{K}(X)$, then for any $\tau \in K(X), \xi \otimes \tau \in \tilde{K}(X)$. In particular for $\xi, \tau \in \tilde{K}(X)$, then $\xi \otimes \tau \in \tilde{K}(X)$. In this way $\tilde{K}(X)$ is a "commutative ring" without the identity.

Let $f: X \longrightarrow Y$ be a map. Consider the induced ring homomorphism $K(f): K(Y) \longrightarrow K(X)$. For any point $x \in X$, since

commutes, we get a commutative diagram of rings:

It follows that f induces a homomorphism of abelian groups $\tilde{K}(f): \tilde{K}(Y) \longrightarrow$ $\tilde{K}(X)$. It is actually a homomorphisms of "commutative rings" without identities.

Consider S^{2}. The rank homomorphism rank : $K\left(S^{2}\right) \longrightarrow \mathbf{Z}$, is given by the evaluation at 0 homomorphism ev : $\mathbf{Z}[T] /(T-1)^{2} \longrightarrow \mathbf{Z}$. Its kernel $\tilde{K}\left(S^{2}\right)$, as an abelian group, is generated by $T-1$ and is isomorphic to \mathbf{Z}. Note that the multiplication $(T-1)(T-1)=0$. So the multiplication on $\tilde{K}\left(S^{2}\right)$ is trivial.

1.36 Cones and exact sequences

Let X be a space and $A \subset X$ its subspace. Define X / A to be the following topological space. As a set, $X / A:=(X \backslash A) \cup\{[A]\}$, i.e., in addition to elements of the complement $X \backslash A$ it has one more element which is denoted by $[A]$. Let $\pi: X \longrightarrow X / A$ be a function define by the formula:

$$
\pi(x)= \begin{cases}x & \text { if } x \in X \backslash A \\ {[A]} & \text { if } x \in A\end{cases}
$$

Define the topology on X / A to be the quotient topology given by the above function. Thus $U \subset X / A$ is open if and only if $\pi^{-1}(U)$ is open in X.
1.36.1 Excercise. Assume that X is compact and $A \subset X$ is closed. Show that X / A is compact.

Let X be a space. Consider the product $X \times I$ and a subspace $X_{1}=$ $X \times\{1\} \subset X \times I$. The space $(X \times I) / X_{1}$ is called the cone of X and denoted by $C X$. The inclusion $X=X \times\{0\} \subset(X \times I) / X_{1}=C X$ is called the base of the cone.
1.36.2 Excercise. Show that $C X$ is a contractible space for any X.

Let $f: A \longrightarrow X$ be a map. Define $X \cup_{f} C A$ to be the quotient of $X \coprod C A$ by the relation that identifies a in the base of $C A$ with $f(a)$ with the quotient topology given by the quotient map $X \coprod C A \longrightarrow X \cup_{f} C A$. The composition of this map with the inclusion $X \subset X \coprod C A$, is denoted by $i: X \longrightarrow X \cup_{f} C A$.
1.36.3 Excercise. Show that if A and X are compact, then so is $X \cup_{f} C A$, for any $f: A \longrightarrow X$.
1.36.4 Theorem. Assume that $f: A \longrightarrow X$ is a map between compact spaces. Then the following is an exact sequence of abelian groups:

$$
\tilde{K}(A) \stackrel{\tilde{K}(f)}{\longleftarrow} \tilde{K}(X) \stackrel{\tilde{K}(i)}{\longleftarrow} \tilde{K}\left(X \cup_{f} C A\right)
$$

1.36.5 Excercise. Prove the above theorem.

