
Lecture 8

1.33 Tautological line bundle over S
2

Consider the tautological line bundle λ : E −→ CP
1 = S

2. In this section
we are going to identify the clutching function G1(λ) ∈ [S1

, GL(C)] and
study its properties. Note that the group GL(C) can be identified with the
multiplicative group of non-zero complex numbers C∗. Let D− ⊂ CP

1 be
the subspace of lines in C2 that are generated by vectors of the form (z, 1)
for |z| ≤ 1. The C-line containing vector (z, 1) is denoted by L(z, 1). Let
D+ ⊂ CP

1 be the subspace of lines in C2 that are generated by vectors of
the form (1, z) for |z| ≤ 1. The C-line containing vector (1, z) is denoted by
L(1, z). Note that the functions:

C ⊃ D
2 = {z | |z| ≤ 1} � z �→ L(z, 1) ∈ D−

C ⊃ D
2 = {z | |z| ≤ 1} � z �→ L(1, z) ∈ D+

are isomorphisms. Thus we can think about D− and D+ as discs. Note
further that D− ∩D+ = {z ∈ C | |z| = 1} is the circle S

1 ⊂ C.
Let φ : D2

− × C −→ λ
−1(D−) and ψ : D2

+ × C −→ λ
−1(D+) be maps

defined by the formulas:

φ(L(z, 1), t) := (L(z, 1), t(z, 1)) ψ(L(1, z), t) := (L(1, z), t(1, z))

These maps are trivializations of λ over the subspaces D2
− and D

2
+. Consider

the composition:

S
1 ×C = D

2
− ∩D

2
+ ×C

ψ−1φ−−−→ D
2
− ∩D

2
+ ×C = S

1 ×C

It maps an element (L(z, 1), t) to (L(1, 1/z), tz). Thus the induced map
S
1 −→ GL(C) is the standard inclusion S

1 ⊂ C∗ = GL(C). This proves:

1.33.1 Proposition. The element G1(λ) ∈ [S1
, GL(C)], associated with the

tautological bundle λ : E −→ CP
1 = S

2, is represented by the standard
inclusion S

1 ⊂ C∗ = GL(C).

Consider the following vector bundles of rank 2 over CP
1 = S

2:

(λ⊗ λ)⊕ 1 λ⊕ λ

It follows from the above proposition, that the elements:

G2((λ⊗ λ)⊕ 1) ∈ [S1
, GL(C2)] � G2(λ⊕ λ)
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are represented by the following functions:

S
1 � z �→

�
z
2 0
0 1

�
∈ GL(C2)

S
1 � z �→

�
z 0
0 z

�
∈ GL(C2)

The space GL(C2) is connected. Thus there is a path ω : I −→ GL(C2)
such that:

ω(0) =

�
1 0
0 1

�
ω(1) =

�
0 1
1 0

�

Note that since det(ω(0)) = 1 and det(ω(1)) = −1, these matrices belong
to different connected components of GL(R2). Thus the fact that we use
complex numbers is important. We can use this path to define a homotopy:

H : S1 × I −→ GL(C2), H(z, t) :=

�
z 0
0 1

�
ω(t)

�
1 0
0 z

�
ω(t)

By direct verification one can check that:

H(z, 0) =

�
z 0
0 z

�
H(z, 1) =

�
z
2 0
0 1

�

We can thus conclude that:

1.33.2 Proposition. Let λ : E −→ CP
1 = S

2 be the tautological bundle.
Then the bundles (λ⊗ λ)⊕ 1 and λ⊕ λ are isomorphic.

1.34 Statement of the periodicity theorem

Consider the map p : S
2 −→ D

0. It induces a homomorphism of rings
K(p) : K(D0) −→ K(S2). Recall that K(D0) is isomorphic to Z via the
rank map. The homomorphism K(p) assigns to k ≥ 0 the element in K(S2)
represented by the product bundle k. Recall that λ1 : E −→ S

2 = CP
1

denotes the tautological line bundle (of rank 1). We can use K(p) to define
a ring homomorphism:

Z[T ] � (a0 + a1T + · · ·+ anT
n) �→ a0 ⊕ (a0 ⊗ λ1)⊕ · · ·⊕ (a0 ⊗ λ

⊗n
1 ) ∈ K(S2)

which we denote by Λ : Z[T ] −→ K(S2). The polynomial (T − 1)2 =
T

2 − 2T + 1 is sent via Λ to (λ⊗ λ)⊕ 1− λ⊕ λ, which is the zero element
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according to Proposition 1.33.2. Thus the homomorphism Λ factors through
Z[T ]/(T − 1)2 −→ K(S2), which we also denote by Λ.

Further let X be a compact space. Consider the product S2 ×X and the
following commutative diagram where the maps p1 and p2 are the appropriate
projections:

X × S
2

p1 ��

p2
��

X

��

S
2 ��

D
0

By applying K-theory to the above diagram, we get a commutative diagram
of rings:

K(D0) ��

��

K(X)

K(p1)
��

K(S2)
K(p2) �� K(X × S

2)

Since K(D0) = Z, we can use the commutativity of the above diagram to
get a ring homomorphism Ω : K(X)⊗Z K(S2) −→ K(X × S

2).

1.34.1 Theorem. The following ring homomorphisms are isomorphisms:

Λ : Z[T ]/(T − 1)2 −→ K(S2) Ω : K(X)⊗Z K(S2) −→ K(X × S
2)

1.35 Reduced K-theory

Let X be a space. For any point x ∈ X, we have a rank ring homomorphism:
rankx : K(X) −→ Z.

1.35.1 Definition. K̃(X) := {ξ ∈ K(X) | for any x ∈ X, rankx(ξ) = 0}.

Since rankx is a ring homomorphism, K̃(X) is an ideal in K(X). Thus,
if ξ ∈ K̃(X), then for any τ ∈ K(X), ξ ⊗ τ ∈ K̃(X). In particular for
ξ, τ ∈ K̃(X), then ξ⊗ τ ∈ K̃(X). In this way K̃(X) is a ”commutative ring”
without the identity.

Let f : X −→ Y be a map. Consider the induced ring homomorphism
K(f) : K(Y ) −→ K(X). For any point x ∈ X, since

D
0

x

����
��

��
�� f(x)

���
��

��
��

�

X
f �� Y
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commutes, we get a commutative diagram of rings:

K(Y )

rankf(x) ����������

K(f)
�� K(X)

rankx����
��

��
��

�

Z

It follows that f induces a homomorphism of abelian groups K̃(f) : K̃(Y ) −→
K̃(X). It is actually a homomorphisms of ”commutative rings” without iden-
tities.

Consider S2. The rank homomorphism rank : K(S2) −→ Z, is given by
the evaluation at 0 homomorphism ev : Z[T ]/(T − 1)2 −→ Z. Its kernel
K̃(S2), as an abelian group, is generated by T − 1 and is isomorphic to Z.
Note that the multiplication (T − 1)(T − 1) = 0. So the multiplication on
K̃(S2) is trivial.

1.36 Cones and exact sequences

Let X be a space and A ⊂ X its subspace. Define X/A to be the following
topological space. As a set, X/A := (X \ A) ∪ {[A]}, i.e., in addition to
elements of the complement X \A it has one more element which is denoted
by [A]. Let π : X −→ X/A be a function define by the formula:

π(x) =

�
x if x ∈ X \ A
[A] if x ∈ A

Define the topology on X/A to be the quotient topology given by the above
function. Thus U ⊂ X/A is open if and only if π−1(U) is open in X.

1.36.1 Excercise. Assume that X is compact and A ⊂ X is closed. Show
that X/A is compact.

Let X be a space. Consider the product X × I and a subspace X1 =
X×{1} ⊂ X×I. The space (X×I)/X1 is called the cone of X and denoted
by CX. The inclusion X = X × {0} ⊂ (X × I)/X1 = CX is called the base
of the cone.

1.36.2 Excercise. Show that CX is a contractible space for any X.

Let f : A −→ X be a map. Define X ∪f CA to be the quotient of
X

�
CA by the relation that identifies a in the base of CA with f(a) with

the quotient topology given by the quotient map X
�

CA −→ X ∪f CA.
The composition of this map with the inclusion X ⊂ X

�
CA, is denoted by

i : X −→ X ∪f CA.
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1.36.3 Excercise. Show that if A and X are compact, then so is X ∪f CA,
for any f : A −→ X.

1.36.4 Theorem. Assume that f : A −→ X is a map between compact
spaces. Then the following is an exact sequence of abelian groups:

K̃(A)
K̃(f)←−−− K̃(X)

K̃(i)←−− K̃(X ∪f CA)

1.36.5 Excercise. Prove the above theorem.

51


