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SECOND PART: DE RHAM COHOMOLOGY

MATTIAS DAHL

For this part of the course we follow the book “From calculus to cohomology:
de Rham cohomology and characteristic classes” by Madsen and Tornehave. Here
some comments on the lectures.

Lecture 9, March 31. Chapter 1: Short illustration of the basic idea of de Rham
cohomology in terms of vector fields on open sets of R2 and R3. Chapter 2: The al-
ternating algebra. All is important, in particular the relation with the determinant
(Lemma 2.13) and how to find a basis (Theorem 2.15).

Lecture 10, April 7. Chapter 3: Definition of de Rham cohomology for open
subsets of Rn. Important details are: differential of a function in standard basis
(Example 3.3), characterization of d (Theorem 3.7), d commutes with pullback φ∗,
and characterization of the pullback (Theorem 3.12). Pullback of 1-forms and n-
forms (Example 3.13). Chapter 4: Basic homological algebra, long exact sequence
of cohomology groups from a short exact sequence of chain complexes.

Lecture 11, April 14. Chapter 5: The Mayer-Vietoris sequence is an important
tool in making (de Rham) cohomology a computable topological invariant. Try to
understand the connecting homomorpism as explicitly as possible, see Definition
4.5, Theorem 5.1 (for surjectivity of J), and Exercise 5.1. Chapter 6: Homotopy
invariance. Find a chain homotopy by integration (Theorem 6.7). Explicit compu-
tations (p. 43-46).

Lecture 12, April 28. Chapter 7: Classical applications of algebraic topology
in Theorem 7.1 (Brouwer’s fixed point theorem) and Theorem 7.3 (existence of
non-vanishing vector fields on spheres). Both results follow from the knowledge of
H∗(Rn \ {0}) together with homotopy invariance. The rest of the chapter is also
interesting, containing for example the Jordan-Brouwer separation theorem (Thm.
7.10), invariance of domain (Cor. 7.13), dimension invariance (Cor. 7.14). Chapter
8: We will only need the very basic definitions of smooth manifolds, where the most
important concepts are charts and smooth atlases (Def. 8.3). All other concepts
such as smooth functions, maps, diffeomorphisms are then defined by composing
with the charts in an appropriate way. Further important concepts (not mentioned
in the lecture) are submanifolds and embeddings (Def 8.8, 8.10), and the fact that
any smooth manifold can be realized as a submanifold of RN for N large enough
(Thm. 8.11). Chapter 9: For analysis on manifolds it is fundamental to have a
good definition of tangent vectors (see p. 65-67): One definition uses directions of
curves, the other defines a tangent direction as a directional derivative acting on
functions. See also http://en.wikipedia.org/wiki/Tangent space.
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Lecture 13, May 5. Chapter 9: The tangent bundle has transition functions given
by the Jacobians of the coordinate-change maps for the atlas, see top of p. 68 and
http://en.wikipedia.org/wiki/Tangent bundle. The transition functions are
maps U1 ∩ Uj → GL(Rn), by composing with the map GL(Rn) 3 f 7→ Altk(f) ∈
GL(Altk(Rn)) (see p. 13) one gets the transition functions for the bundle of k-
forms. The k-forms on a manifold are sections of this bundle (in the book k-forms
are equivalently defined as alternating multilinear maps of tangent vectors satisfying
a smoothness condition, Def. 9.5). To define integration of forms it is necessary to
work with oriented manifolds, important is the fact that a choice of orientation is
equivalent to a choice of positive atlas (see p. 72). Not every manifold is orientable,
a good example are the real projective spaces RPn of even dimension (see Ex. 9.18
for the the orientation form Sn, and Ex. 9.19 for RPn). The rest of Chapter 9
contains a lot of interesting material: Tubular neighbourhoods (Thm. 9.23, Cor.
9.28), Cohomology of Sn (Ex. 9.29), Mayer-Vietoris (Rem. 9.30), Cohomology of
RPn (Ex. 9.31). Chapter 10: The integral of an n-form over an oriented n-manifold
is defined in Lem. 10.1 and Prop. 10.2, here it is crucial to have an oriented atlas
for the integral to be well-defined. Stokes’ theorem (Thm 10.8) relates the exterior
differential d to the integral. Theorem 10.13 relates integration to cohomology and
is quite important, you should read the proof over the following pages. Corollary
10.14 shows that top-dimensional cohomology is always 1-dimensional for compact
connected orientable manifolds (and in particular the sphere has smallest possible
cohomology for such manifolds).

Lecture 14, May 12. Chapter 11: From Corollary 10.14 we know that Hn(Mn) =
R for a compact connected manifold Mn equipped with an orientation, this gives
the definition of the degree of a smooth map as the induced map on R. In Theorem
11.19 the degree deg(f) (which is a global invariant) is computed as a sum of
local contributions Ind(f ; q). This is conveniently proved using differential forms
since we can choose the form to have support precisely near the regular value and
thus intermediate between local and global. With slightly different interpretation
Proposition 11.11 tells us that deg(f) is a (co)bordism invariant (for definitions
see http://www.map.him.uni-bonn.de/Bordism). Divide the boundary of X into
two parts N+ and N−, where N− is equipped with the opposite orientation. Then
deg(f+) = deg(f−) where f± = F|N± . In this chapter two applications of the degree
are given, first the linking number of submanifolds, second the index of vector fields.
Theorem 11.14 gives the linking number both as an integral and a combinatorial
sum (the sum explained further in Remark 11.15). The total index of a vector field
X is defined as a sum of local indices ι(X; p) at zeros p of the vector field (note
that the local index is automatically zero if X(p) 6= 0.) By Proposition 11.11 the
index is given by the degree of the vector field restricted to the boundary of the
domain, see Thm 11.22, Cor 11.24. This is finally applied to identify the index of
a vector field on a manifold Mn with the degree of the Gauss map of a tubular
neighborhood of an embedding Mn ⊂ Rn+k, Thm 11.27. The conclusion is that
neither side of the identity depends on anything more than M .

Lecture 15, May 19. Chapter 12: In this chapter the Index of a vector field X on
a manifold M is identfied with the Euler characteristic χ(M), this is the Poincare-
Hopf Theorem 12.1. Since we already know that the index does not depend on X
we choose the vector field to be a gradient-like vector field for a Morse function f on
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M , this is explained and defined in 12.2-12.8. If M is equipped with a Riemannian
metric then the gradient vector field of f is defined in Remark 12.10. The first step
of the proof is to identify the local indices at critical points of the Morse function,
this is done in Lemma 12.9 and gives the expression for the index in Theorem
12.11. The second step of the proof is to study the sub-level sets M(a) of the Morse
function. The very important Lemmas 12.12 and 12.13 describe how the topology
of M(a) changes as a passes through a critical value, some pictures can be found
at http://en.wikipedia.org/wiki/Morse theory. This gives a simple formula
for the Euler characteristic in Proposition 12.14, it is slightly more complicated
to formulate the effect on cohomology (see Exercise 12.6). Theorem 12.16 finally
computes the Euler characteristic as a sum over the critical points of the Morse
function. There are several other nice applications of Morse theory, see Corollary
12.17, Examples 12.19-20, Exercises 12.9-11.
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