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2. THE SECOND LECTURE- SUBGROUPS CYCLIC GROUPS ANDCAYLEY DIGRAPHS

The second lecture introduces subgroups and, deals witit gyoups, generators of groups
and Cayley digraphs We investigate the inner structure of groups and introdbeenbtion of
group homomorphismse., maps between groups preserving the group structure.

Definition 2.1 (Subgroup) We say that a grou/ which is a non-empty subset of a groGps
asubgroupof G, denoted by < G if the binary operation o/ is the restriction of the binary
operation orG, i.e., if H is a group with the same group operation.

Example 2.2.

(1) The set of even intege?¥ form a subgroup of the integeig,under addition.
(2) More generally, for any integerwe have thatZ < Z.

(3) The trivial subgroude} is a subgroup in any grouge} < G.

(4) The group itself is a subgrou@, < G.

Definition 2.3 (non-trivial, proper) A subgroupH < G is non-trivial if H # {e}. Itis proper
if H # G and in this case we writf < G.

It is convenient to notice that we can check whether a suldsegomoup forms a subgroup by
the following result:

Theorem 2.4.Let H be a non-empty subset of a grotip ThenH is a subgroup ot~ if and only
if

i) H is closed under the group operation, i.e,hp € H — axbe H

ii) H is closed under taking inverses, i.ec H = a '€ H

Proof. If H is a subgroup, then the group operation(odefines the group operation é¢hand
henceH must be closed under this operation and under taking inserse

Suppose that! satisfies the two conditions. Nowdefines a binary operation di, which
has to be associative, since it is associative on a larg€r.s€he unit ofG has to be inH since

The second lecture is based on the sections 5-7 of Chapté First Course in Abstract Algebra [1].
1



2 MATS BOIJ

a € H= a'!e€ H= e=aa"' € H. Hence the three axioms for a group holds for the
restriction of the group operation @nto the subseti. O
Example 2.5. We can now easily get many more examples of subgroups:

(1) The set of matrices of determinant ofg,(R) < Gl,(R) - thespecial linear group
(2) The set of orthogonal matrices,,(R) < Gl,,(R) — theorthogonal group
(3) The set of even permutatiods, < S,, — thealternating group

Corollary 2.6. If H is a finite subset of a grou@, thenH is a subgroup if it is closed under the
group operation.

Proof. Let g be any element of. If H is finite and closed under the group operation, some
powers ofg have to be equal, say = ¢/, i < j. By cancellation in&, we getg’ % = e. Hence
g ' =¢’~"! ¢ H andH is closed under taking inverses. O

Definition 2.7 (Order and cyclic supgroupshny elementy of a group<= generates a subgroup,
(9) = {¢'|i € Z}. This is thecyclic subgroup generated hy The order of a group is its
cardinality, i.e., the number of elements and tieer of an elemeny is the order of the cyclic
subgroup generated lgy

Remark 2.8. We have to check thdy) really is a subgroup, which is easily done by verifying
that

° g xg' =gt € (g)
e g ! € (g) since—1 € Z.
Another important way to get subgroups of a group is from niegi&een groups.

Definition 2.9 (homomorphism, isomorphism, kernel, imag&)map ¢ : G — H between
groups is agroup homomorphisnf it respects the group structure, i.e., if

(g1 * g2) = d(g1) * d(g2), Va1, g2 € G.

A group isomorphisnis a bijective group homomorphism, and¢if: G — H is an isomor-
phism, we say that and H are isomorphic. Th&ernelof ¢ is given by

ker¢ = {g € Glo(g) = e}
and themageof ¢ is given by
im¢ = {¢(g)|g € G}.

Exercise 2.10.Prove that the kernel and image of a group homomorphism&G — H are
subgroups, i.e., thdter ¢ < G andim¢ < H.

Exercise 2.11.Prove thatp~}(K) < G'if ¢ : G — H is a group homomorphism and < H.

Example 2.12. The subgroupsi,, < S, andSl,(R) < Gl,(R) are kernels of the homomor-
phisms:
sgn : S, — {£1} and det : Gl, — R™.

Exercise 2.13.Prove that a group homomorphism is injective if and only & kiernel is trivial.
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2.1. Cyclic groups.

Definition 2.14 (Cyclic group) A group G is cyclic if there is an elemeng € G such that
G = (g). Such an element is callechaneratorof G.

Theorem 2.15. A cyclic group is either infinite, and isomorphic #ounder addition, or finite
and isomorphic t&,, under addition for some positive integer

Proof. If g is a generator an@, we get a surjective homorphism fram Z — G by ¢ (i) = ¢".

If the kernel of¢ is trivial, ¢ is an isomorphism and' is infinte.

If there is a non-trivial kernel of this homomorphism, tebe the smallest positive integer in
ker ¢. Then we have thaj” = e, butg’ # i for 0 < i < n. Henceg induces an isomorphism
¢ : Z, — G, by ¢([i]) = ¢'. This is well-defined since

i =[]l <= j=kn+i= ¢’ = ¢g""" =cFg' = ¢".
O
Theorem 2.16.A subgroup of a cyclic group is cyclic.

Proof. According Theorem 2.15, it is enough to prove the statem@n¥Zfand forZ, under
addition.

If H < Zis asubgroup, we can létbe the smallest positive integerih. Now (d) < H. If n
is any integer inf, we can writen = gd+r, where) < r < d. SinceH is a subgroup; = n—qd
isin H sincen andd are inH. Hencer = 0 by the assumption o andn = qd € (d).

Let H < Z, be a subgroup. Then'(H) = {i € Z|¢(:) € H} is a subgroup of, where
¢ : Z — Z, is the natural surjective homomorphism given o) = [i]. By the above
argument we can find € Z such that(d) = ¢~'(H). This means that every elementihcan
be written asp(nd) for somen, but this means thaf = (¢(d)) andH is cyclic. O

Theorem 2.17.Let GG be a cyclic group of orden. ThenG has a unique subgroup of order
for any positive divisot in n.

Proof. We may identifyG with Z, under addition. For any divisat in n, we may take the
subgroup([n/d]). This subgroup has ordérsince[n/d] has order.

If H is a subgroup of ordef, let m be the least positive integer such thal € H. ThenH
is generated byn as we saw earlier. Nowsn| has to have ordef, which implies that in fact
m =n/d. O

2.2. Generating sets and Cayley digraphs.

Definition 2.18 (Subgroup generated by a self) S is a subset of a grouf@, we let(S) denote
thesubgroup generated hy, i.e., the intersection of all subgroups®@fthat contains.

Remark 2.19. We should check that the definition makes sense by checkatd$h is in fact
a subgroup. There is at least one subgroup that contginamelyG itself. The intersection of
any set of subgroups is again a subgroup, since

g.he(Hi=gheH,Vicl=>gxhecH,Vicl=gxhec(|H.
el 1€l
and similarily for the inverses.
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Theorem 2.20.We have thatS) = {a,a, - - - a,|a; € Sora;* € S, for somen}.

Proof. All the element in the right hand side has to be in any subgtbapcontainss, since any
subgroup is closed under the group operation and undergakierses. Thus is is sufficient to
prove that the right hand side is in fact a subgroup.

It is closed under the group operation since we can compassush expressions to a longer
expression, and it is closed under inverses since

(a1a2 . an)_l = agla;il RPN a[l_l'

O

Definition 2.21 (Generators)If S is a subset of a grou@ such thatz = (S), we say thatS is
a set ofgeneratorof G.

Definition 2.22 (Cayley digraph) For a groupG with a generator sef, the Cayley digraphs
a directed graph which h&s as the set of vertices for each p&it s) € G x S there is an arc
labelleds from g to gs.

Remark 2.23. We can easily see that the Cayley digraph is connected, Siigca set of gener-
ators. In fact, we can use this in order to verify thagenerates-.

Furthermore, from each vertex, there are exagilyarcs going out and between any two
vertices, there is at most one arc in each direction.

Example 2.24.The dihedral group,,, is generated by one reflectierand one basic rotation
r by an angler /n. Thus we can use the generating Set {s,r} and draw the corresponding
Cayley digraph. There will be two-way arcs betweémndris and there will be arcs labelled
by r from r? to r* and fromris to ri~1s. We draw this folm = 5 in Figure 1 below.

r

FIGURE 1. The Cayley digraph of the dihedral grodn0 with respect to the
generators ands.
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