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2. THE SECOND LECTURE- SUBGROUPS, CYCLIC GROUPS ANDCAYLEY DIGRAPHS

The second lecture introduces subgroups and, deals with cyclic groups, generators of groups
and Cayley digraphs.1 We investigate the inner structure of groups and introduce the notion of
group homomorphisms, i.e., maps between groups preserving the group structure.

Definition 2.1 (Subgroup). We say that a groupH which is a non-empty subset of a groupG is
a subgroupof G, denoted byH ≤ G if the binary operation onH is the restriction of the binary
operation onG, i.e., if H is a group with the same group operation.
Example 2.2.

(1) The set of even integers2Z form a subgroup of the integers,Z under addition.
(2) More generally, for any integern we have thatnZ ≤ Z.
(3) The trivial subgroup{e} is a subgroup in any group,{e} ≤ G.
(4) The group itself is a subgroup,G ≤ G.

Definition 2.3 (non-trivial, proper). A subgroupH ≤ G is non-trivial if H 6= {e}. It is proper
if H 6= G and in this case we writeH < G.

It is convenient to notice that we can check whether a subset of a group forms a subgroup by
the following result:

Theorem 2.4.LetH be a non-empty subset of a groupG. ThenH is a subgroup ofG if and only
if

i) H is closed under the group operation, i.e.,a, b ∈ H =⇒ a ∗ b ∈ H
ii) H is closed under taking inverses, i.e.,a ∈ H =⇒ a−1 ∈ H

Proof. If H is a subgroup, then the group operation onG defines the group operation onH and
henceH must be closed under this operation and under taking inverses.

Suppose thatH satisfies the two conditions. Now∗ defines a binary operation onH, which
has to be associative, since it is associative on a larger setG. The unit ofG has to be inH since

1The second lecture is based on the sections 5-7 of Chapter I inA First Course in Abstract Algebra [1].
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a ∈ H ⇒ a−1 ∈ H ⇒ e = aa−1 ∈ H. Hence the three axioms for a group holds for the
restriction of the group operation onG to the subsetH. �

Example 2.5.We can now easily get many more examples of subgroups:

(1) The set of matrices of determinant one,Sln(R) ≤ Gln(R) - thespecial linear group.
(2) The set of orthogonal matrices,On(R) ≤ Gln(R) — theorthogonal group.
(3) The set of even permutationsAn ≤ Sn — thealternating group.

Corollary 2.6. If H is a finite subset of a groupG, thenH is a subgroup if it is closed under the
group operation.

Proof. Let g be any element ofH. If H is finite and closed under the group operation, some
powers ofg have to be equal, saygi = gj, i < j. By cancellation inG, we getgj−i = e. Hence
g−1 = gj−i−1 ∈ H andH is closed under taking inverses. �

Definition 2.7 (Order and cyclic supgroups). Any elementg of a groupsG generates a subgroup,
〈g〉 = {gi|i ∈ Z}. This is thecyclic subgroup generated byg. The order of a group is its
cardinality, i.e., the number of elements and theorder of an elementg is the order of the cyclic
subgroup generated byg.

Remark 2.8. We have to check that〈g〉 really is a subgroup, which is easily done by verifying
that

• gi ∗ gj = gi+j ∈ 〈g〉
• g−1 ∈ 〈g〉 since−1 ∈ Z.

Another important way to get subgroups of a group is from mapsbetween groups.

Definition 2.9 (homomorphism, isomorphism, kernel, image). A map φ : G −→ H between
groups is agroup homomorphismif it respects the group structure, i.e., if

φ(g1 ∗ g2) = φ(g1) ∗ φ(g2), ∀g1, g2 ∈ G.

A group isomorphismis a bijective group homomorphism, and ifφ : G −→ H is an isomor-
phism, we say thatG andH are isomorphic. Thekernelof φ is given by

ker φ = {g ∈ G|φ(g) = e}

and theimageof φ is given by
imφ = {φ(g)|g ∈ G}.

Exercise 2.10.Prove that the kernel and image of a group homomorphismφ : G −→ H are
subgroups, i.e., thatker φ ≤ G andimφ ≤ H.

Exercise 2.11.Prove thatφ−1(K) ≤ G if φ : G −→ H is a group homomorphism andK ≤ H.

Example 2.12.The subgroupsAn ≤ Sn andSln(R) ≤ Gln(R) are kernels of the homomor-
phisms:

sgn : Sn −→ {±1} and det : Gln −→ R
∗.

Exercise 2.13.Prove that a group homomorphism is injective if and only if the kernel is trivial.
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2.1. Cyclic groups.

Definition 2.14 (Cyclic group). A group G is cyclic if there is an elementg ∈ G such that
G = 〈g〉. Such an element is called ageneratorof G.

Theorem 2.15.A cyclic group is either infinite, and isomorphic toZ under addition, or finite
and isomorphic toZn under addition for some positive integern.

Proof. If g is a generator andG, we get a surjective homorphism fromφ : Z −→ G by φ(i) = gi.
If the kernel ofφ is trivial, φ is an isomorphism andG is infinte.
If there is a non-trivial kernel of this homomorphism, letn be the smallest positive integer in

ker φ. Then we have thatgn = e, but gi 6= i for 0 < i < n. Henceφ induces an isomorphism
φ̄ : Zn −→ G, by φ̄([i]) = gi. This is well-defined since

[i] = [j] ⇐⇒ j = kn + i =⇒ gj = gkn+i = ekgi = gi.

�

Theorem 2.16.A subgroup of a cyclic group is cyclic.

Proof. According Theorem 2.15, it is enough to prove the statement for Z and forZn under
addition.

If H ≤ Z is a subgroup, we can letd be the smallest positive integer inH. Now 〈d〉 ≤ H. If n
is any integer inH, we can writen = qd+r, where0 ≤ r < d. SinceH is a subgroup,r = n−qd
is in H sincen andd are inH. Hencer = 0 by the assumption ond andn = qd ∈ 〈d〉.

Let H ≤ Zn be a subgroup. Thenφ−1(H) = {i ∈ Z|φ(i) ∈ H} is a subgroup ofZ, where
φ : Z −→ Zn is the natural surjective homomorphism given byφ(i) = [i]. By the above
argument we can findd ∈ Z such that〈d〉 = φ−1(H). This means that every element inH can
be written asφ(nd) for somen, but this means thatH = 〈φ(d)〉 andH is cyclic. �

Theorem 2.17.Let G be a cyclic group of ordern. ThenG has a unique subgroup of orderd
for any positive divisord in n.

Proof. We may identifyG with Zn under addition. For any divisord in n, we may take the
subgroup〈[n/d]〉. This subgroup has orderd since[n/d] has orderd.

If H is a subgroup of orderd, let m be the least positive integer such that[m] ∈ H. ThenH
is generated bym as we saw earlier. Now,[m] has to have orderd, which implies that in fact
m = n/d. �

2.2. Generating sets and Cayley digraphs.

Definition 2.18 (Subgroup generated by a set). If S is a subset of a groupG, we let〈S〉 denote
thesubgroup generated byS, i.e., the intersection of all subgroups ofG that containS.

Remark 2.19. We should check that the definition makes sense by checking that 〈S〉 is in fact
a subgroup. There is at least one subgroup that containsS, namelyG itself. The intersection of
any set of subgroups is again a subgroup, since

g, h ∈
⋂

i∈I

Hi =⇒ g, h ∈ Hi, ∀i ∈ I =⇒ g ∗ h ∈ Hi, ∀i ∈ I =⇒ g ∗ h ∈
⋂

i∈I

Hi.

and similarily for the inverses.
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Theorem 2.20.We have that〈S〉 = {a1a2 · · ·an|ai ∈ S or a−1

i ∈ S, for somen}.

Proof. All the element in the right hand side has to be in any subgroupthat containsS, since any
subgroup is closed under the group operation and under taking inverses. Thus is is sufficient to
prove that the right hand side is in fact a subgroup.

It is closed under the group operation since we can compose two such expressions to a longer
expression, and it is closed under inverses since

(a1a2 · · ·an)−1 = a−1

n a−1

n−1 · · ·a
−1

1 .

�

Definition 2.21 (Generators). If S is a subset of a groupG such thatG = 〈S〉, we say thatS is
a set ofgeneratorsof G.

Definition 2.22 (Cayley digraph). For a groupG with a generator setS, theCayley digraphis
a directed graph which hasG as the set of vertices for each pair(g, s) ∈ G × S there is an arc
labelleds from g to gs.

Remark 2.23. We can easily see that the Cayley digraph is connected, sinceS is a set of gener-
ators. In fact, we can use this in order to verify thatS generatesG.

Furthermore, from each vertex, there are exactly|S| arcs going out and between any two
vertices, there is at most one arc in each direction.

Example 2.24.The dihedral groupD2n is generated by one reflections and one basic rotation
r by an angle2π/n. Thus we can use the generating setS = {s, r} and draw the corresponding
Cayley digraph. There will be two-way arcs betweenri andris and there will be arcs labelled
by r from ri to ri and fromris to ri−1s. We draw this forn = 5 in Figure 1 below.
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FIGURE 1. The Cayley digraph of the dihedral groupD10 with respect to the
generatorsr ands.
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