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4. THE FOURTH LECTURE- LAGRANGE’ S THEOREM AND FINITELY GENERATED ABELIAN

GROUPS

In the fourth lecture, we start by studying cosets of a subgroup in order to get to Lagrange’s
theorem and to prepare for the construction of factor groups.

Then we look at direct products and the structure theorem forfinitely generated abelian groups,
which we will come back to later.1

Definition 4.1 (Cosets). Let H be a subgroup of a groupG. The left cosets ofH in G are the
subsets ofG that can be written as

gH = {gh|h ∈ H}

for some elementg in G. Similarly, right cosets ofH in G are the subsets ofG that can be written
as

Hg = {hg|h ∈ H}

for some elementg in G.

Remark 4.2. We can also see the right cosets asorbits in G under the action ofH on G given
by the group operation,H × G → G.

It turns out the the cosets are the equivalence classes of natural equivalence relations onG
defined by the subgroupH.

Theorem 4.3. The relation given bya ∼L b ⇔ a−1b ∈ H is an equivalence relation with the
left cosets ofH as its equivalence classes. Similarly, the right cosets ofH are the equivalence
classes ofa ∼R b ⇔ ab−1 ∈ H.

In particular, the left and right cosets give two partitionsof the setG into disjoint subsets.

Proof. We first check that the relations are equivalence relations:
i) (reflexivity) a−1a = aa−1 = e ∈ H, for all a ∈ G.

1The fourth lecture is based on the sections 10-11 of Chapter II in A First Course in Abstract Algebra [1].
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ii) (symmetry) (a−1b)−1 = b−1a and hencea−1b ∈ H ⇔ b−1a ∈ H sinceH is a subgroup.
We also get(ab−1)−1 = ba−1 andab−1 ∈ H ⇔ ba−1 ∈ H.

iii) (transitivity) If a−1b ∈ H andb−1c ∈ H, we geta−1c = (a−1b)(b−1c) ∈ H. Moreover, if
ab−1 ∈ H andbc−1 ∈ H, we getac−1 = (ab−1)(bc−1) ∈ H.

Now, we check thata ∼L b if and only if they are in the same coset. In fact,a−1b ∈ H ⇔ b ∈
aH. In the same way

ab−1 ∈ H ⇔ a ∈ Hb.

Since the equivalence classes give a partition of the set, weget that the cosets give two parti-
tions of the setG into disjoint subsets. �

Theorem 4.4(Lagrange’s Theorem). If G is a finite group andH ≤ G a subgroup, then|H| is
a divisor in |G|.

Proof. We know from above that the left cosets ofH form a partition of disjoint subsets. It
is now sufficient to see that all the cosets have the same cardinality. In fact, we have that left
multiplication byg gives a bijection

H −→ gH.

�

Definition 4.5 (index). Theindexof a subgroupH in the groupG is the number of left (or right)
cosets ofH in G and is denoted by(G : H).

Observe that the index may be finite even thoughG is not finite, for example ifG = Z and
H = nZ, we get that(G : H) = (Z : nZ) = n.

Exercise 4.6.Show that even if the groupG is infinite, the index of a subgroup may be finite and
in that case, the number of left and right cosets are the same.

Corollary 4.7. a|G| = e for any elementa of a finite groupG, i.e., the order ofa divides the
order ofG.

Proof. The cyclic subgroup generated bya has an order which is the order ofa. Because of
Lagrange’s theorem, we have that the order of〈a〉 divides the order ofG. �

As an easy consequence of Lagranges theorem, we get the following useful result from number
theory:

Theorem 4.8.Letn be any positive integer then we have that

aφ(n) ≡ 1 (mod n)

for all integersa relatively prime ton, whereφ(n) denotes the number of positive integers less
thann which are relatively prime ton.

Proof. Let Z
∗
n denote the set of residue classes modulen which are relatively prime ton. These

are the invertible elements inZn under multiplication and they hence form a group. The order
of this multiplicative group isφ(n), since this is the number of invertible residue classes modulo
n. �

Corollary 4.9 (Fermat’s Theorem). ap ≡ a (mod p) if a is an integer andp is a prime.
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4.1. Direct products.

Definition 4.10 (Direct product). If G andH are groups, we can define a group structure on the
Cartesian product,G × H, by componentwise operations:

(g1, h1) ∗ (g2, h2) = (g1 ∗G g2, h1 ∗H h2),

for g1, g2 ∈ G andh1, h2 ∈ H.
More generally, we can define this for any collection of groups {Hi}i∈I and we get thedirect

product
∏

i∈I Hi.

Remark 4.11. The direct product is associative in the sense that

H1 × (H2 × H3) ∼= (H1 × H2) × H3
∼=

3∏

i=1

Hi.

Theorem 4.12.The group
∏k

i=1 Zmi
is cyclic and isomorphic toZm1m2···mk

if and only if the
numbersm1, m2, . . . , mk are pairwise relatively prime.

Proof. The element(1, 1, . . . , 1) has an order which is the least common multiple of the orders
of the factors. Hence if the numbers are pairwise relativelyprime, the product is cyclic.

If there is a common factor between any two of the numbersm1, m2, . . . , mk, we can find
non-trivial elements of the same order in two of the factors.These elements generates different
subgroups of the same order in the product, which cannot be cyclic by the characterization of
cyclic groups. �

Definition 4.13(Free abelian group). For any setS let FS be the subgroup of
∏

i∈S Z consisting
of elements with only finitely many non-zero components. This is called be thefree abelian
groupon S. (This is the same as the group of integer functions with finite support onS under
pointwise addition.)

Exercise 4.14.Show that for any abelian groupA with a generating setS, there is a surjective
group homomorphism

FS −→ A.

Theorem 4.15(Fundamental Theorem of Finitely Generated Abelian Groups). Any finitely gen-
erated abelian group is a direct product of cyclic groups.

We will not prove this theorem completely now, but will look at some ingredients that goes
into it.

Lemma 4.16.Let A be an abelian group of ordern and for any prime divisorp of n, denote by
Ap the set of elements inA of p power order. ThenA ∼=

∏
p|n Ap.

Proof. First note thatAp is in fact a subgroup, for each prime divisorp of n, since the suma + b
has an order which is a divisor of the product of the orders ofa andb and all factors of a power
of p are powers ofp.

Write n = pn1

1 pn2

2 · · · pnk

k , wherep1, p2, . . . , pk are the distinct prime divisors ofn. Let qi =
n/pni

i =
∏

j 6=i p
nj

j .
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Define a homomorphism

Φ : Ap1
× Ap2

× · · · × Apk
−→ A

by Φ(a1, a2, . . . , ak) = a1 + a2 + · · ·+ ak.
Assume thata = a1 + a2 + · · · + ak = 0. Then we have thatqia = qiai = 0, for all

i = 1, 2, . . . , k. But, qiai = 0 ⇔ ai = 0, since the order ofai is a power ofpi andpi doesn’t
divideqi. HenceΦ is injective.

To see thatΦ is surjective, we can find an integerm =
∑k

i=1 biqi such thatm ≡ 1 (mod n).
For such an element we have that

a = ma =

k∑

i=1

biqia =

k∑

i=1

ai

whereai = biqia ∈ Api
, for i = 1, 2, . . . , k.

To find such an integerm, we note that
∏k

i=1 Zp
ni
i

∼= Zn via the homomorphism

Ψ(b1, b2, . . . , bk) =

k∑

i=1

biqi,

where it is sufficient to check injectivity because the two groups have the same order.Ψ(b1, b2, . . . , bk) =
0 implies thatbi is divisible bypni

i for eachi since all the termsbjqj are divisible bypi for j 6= i.
HenceΨ is injective. �

This lemma reduces the study of finite abelian groups to the study of abelian groups of prime
power order, i.e., abelianp-groups.
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