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5. THE FIFTH LECTURE - HOMOMORPHISMS ANDFACTOR GROUOPS

In the fifth lecture, we start by a quick look at homomorphismsand go furher to define factor
groups which are quotients of a group by a normal subgroup. The elements of the factor groups
are cosets. We will end by using this to prove the structure theorem for finitely generated abelian
groups.1

Definition 5.1 (Homomorphism, kernel and image). A group homomorphismis a functionφ :
G −→ H between groups preserving the group structure, i.e., satisfying

φ(a ∗G b) = φ(a) ∗H φ(b), ∀a, b ∈ G.

Thekernelof φ is given by
ker φ = {a ∈ G|φ(a) = eH}

and theimageof φ is given by
imφ = {φ(a)|a ∈ G}.

Remark 5.2. More generally, we can defineφ(K) ≤ H as

φ(K) = {φ(a)|a ∈ K}

for any subgroupK ≤ G and

φ−1(K) = {a ∈ G|φ(a) ∈ K}

for any subgroupK ≤ H.

Example 5.3. The exponential function is a homomorphismexp : C −→ C∗. We have that the
unit circleS1 is a subgroup inC∗ and the inverse image ofS1 under the exponential map is the
imaginary axisiR in C.

Example 5.4. The exponential mapexp : M2(R) −→ Gl2(R) is not a homomorphism, but
induces a homomorphism on the subset of skew-symmetic matrices. The image is the special
orthpogonal groupSO2(R).

1The fifth lecture is based on the sections 13-15 of Chapter IIIin A First Course in Abstract Algebra [1].
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Definition 5.5 (Normal subgroup). A subgroupH ≤ G is normal if the left and right cosets are
the same, i.e. if any of the following three equivalent conditions holds:

i) aH = Ha, for all a ∈ G.
ii) aHa−1 = H, for all a ∈ G.
iii) a−1Ha = H, for all a ∈ G.

Remark 5.6. All subgroups of an abelian group are normal.

Theorem 5.7.The kernel of a homomorphismφ : G −→ H is a normal subgroup inG.

Proof. If a is any element inG andb ∈ ker φ, we have that

φ(a−1ba) = φ(a−1)eHφ(a) = φ(a−1a) = φ(eG) = eH

Hencea−1ba ∈ ker φ andker φ is normal inG. �

We will soon see that any normal subgroup is the kernel of somehomomorphism.

Definition 5.8 (Factor group). Let H ≤ G be a normal subgroup. Thefactor group, or quotient
group, G/H is the set of cosets ofH in G with the binary operation given by

aH ∗ bH = abH,

for a, b in G.

Remark 5.9. We have to check that the binary operation is well defined. We can see this since
(aH)(bH) = a(Hb)H = abHH = abH sinceH is normal. The operation is associative since
the operation onG is associative, and the cosetH = eH is a unit. The inverse ofaH is given by
a−1H. Hence the factor group is in fact a group.

Theorem 5.10.If H ≤ G is a normal subgroup, then there is a natural quotient homomorphism
G −→ G/H whose kernel isH.

Proof. The homomorphismφ : G −→ G/H is given byφ(a) = aH. Because of the definition
of the operation onG/H we have that

φ(ab) = abH = aHbH = φ(a)φ(b), ∀a, b ∈ G.

The kernel ofφ is given by

ker φ = {a ∈ G|aH = H} = {a ∈ G|a ∈ H} = H.

�

Theorem 5.11(Isomorphism theorem). If φ : G −→ H is a group homomorphism we have an
isomorphism

G/ ker φ
∼

−→ imφ.

Proof. Let K = ker φ and define a homorphism

Φ : G/K −→ H

by Φ(aK) = φ(a), for a ∈ G. This is well-defined since ifaK = bK, we haveab−1 ∈ K and
φ(ab−1) = eH . Henceφ(a) = φ(b). It is a homomorphism sinceΦ(aK ∗ bK) = Φ(abK) =
φ(ab) = Φ(aK)Φ(bK), for all cosetsaK, bK ∈ G/H.



SF2729 GROUPS AND RINGS LECTURE NOTES 2011-02-22 3

The homomorphismΦ is injective since the kernel ofΦ is given by

ker Φ = {aK ∈ G/K|aK = K} = {K}.

ThusΦ gives an isomorphism ofG/K onto the imageimΦ = imφ. �

Example 5.12.We have seen that the alternating gropAn is a subgroup of the symmetric group
Sn. In fact, it is normal since it is the kernel of the homomorphism sgn : Sn −→ {±1}. By
Theorem 5.11 we get that the factor groupSn/An is isomorphich to the image,{±1} when
n ≥ 2.

Example 5.13.Since the special linear groupSln(R) is the kernel ofdet : Gln(R) −→ R∗, we
get thatSln(R) is a normal subgroup and by Theorem 5.11 the factor groupGln(R)/ Sln(R) is
isomorphic to the image,R∗.

Example 5.14.The three permutations of type[22] form a subgroupH of G = S4 together with
the identity permutation. Thus subgroup is normal since thetype is preserved under conjugation.
The quotientG/H has order24/4 = 6 and since there is no element of order6 in S4, there can
be no element of order6 in the factor groupG/H. HenceG/H has to be isomorphic toS3 and
there is a homomorphism fromS4 to S3 whose kernel isH.

Definition 5.15. (Center) Thecenterof a groupG is the subgroup given by

Z(G) = {a ∈ G|ab = ba, ∀b ∈ G}

Theorem 5.16.The center,Z(G), is a normal subgroup ofG.

Proof. First check thatZ(G) is a subgroup. Ifa, b ∈ Z(G), andc is any element ofG, we get
that

(ab−1)c = a(c−1b)−1 = a(bc−1)−1 = acb−1 = cab−1 = c(ab−1)

which shows thatab−1 ∈ Z(G).
Now if a ∈ Z(G) andb is any element ofG, we have

bab−1 = abb−1 = a ∈ Z(G)

which shows thatbZ(G)b−1 = Z(G) andZ(G) is normal. �

Definition 5.17 (Simple group). A group issimpleif it has no proper non-trivial normal sub-
groups.

Remark 5.18. Note that this means that all homomorphisms from a simple group are injective
or trivial.

Finitely generated abelian groups.In the previous lecture we looked at the structure theorem
for finitely generated abelian groups. Now we are in a situation where we can understand why
this theorem holds using factor groups.

Theorem 5.19.A finitely generated abelian group is isomorphic toZm1
×Zm2

×· · ·×Zmk
×Zr,

wherem1, m2, . . . , mk ∈ Z
+ andr ∈ N are such thatmi dividesmi+1 for i = 1, 2, . . . , k − 1.
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Sketch of proof.Let A be a finitely generated abelian group written additively. SinceA is finitely
generated, we have a surjective homomorphism from a free abelian groupZn to A. LetK be the
kernel of this homomorphism. We can find a homomorphism from afree abelian groupF to Zn

mapping ontoK and we can think ofK being generated by the rows of a matrix withn columns
and possiby infinitely many rows.

Let m1 be the smallest positive integer in the subgroup ofZ genereted by all the entries of
the matrix. Then any other element in the matrix is divisibleby m1 and by elementary row
and column operations we can arrange so thatm1 appears in the top left corner. Now we can
again use such operatations to eliminate everything else from the first row and from the first
column. By induction onn we can proceed to get a diagonal matrix with entriesm1, m2, . . . , mk

in the top left corner and the rest of the matrix zero. (In fact, we have now seen that we need
only finitely many rows, so the kernelK is finitely generated.) Moreover,mi dividesmj for all
1 ≤ i ≤ j ≤ k.

The row and column operations only changes bases in the free abelian groups, but we have not
obtained a homomorphismΦ : Zk −→ Zn such that the image is isomorphic toK after a change
of bases inZn, which in turn corresponds to another choice of generators in A.

The theorem now follows from the isomorphism theorem sinceA is isomorphic toZn/K
∼

=
Zn/imΦ. �

Remark 5.20. Therankof A is the numberr in the previous theorem and we see from the proof
that r = n − k. Some of the numbersm1, m2, . . . , mk may be equal to1 and these copies of
the trivial group0 = Z1 = Z/Z may be omitted and we can get the same statement with the
additional condition thatm1 > 1.
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