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5. THE FIFTH LECTURE- HOMOMORPHISMS ANDFACTOR GROUOPS

In the fifth lecture, we start by a quick look at homomorphismd go furher to define factor
groups which are quotients of a group by a normal subgroup.€léments of the factor groups
are cosets. We will end by using this to prove the structugertam for finitely generated abelian
groupst

Definition 5.1 (Homomorphism, kernel and image) group homomorphisrs a functiong :
G — H between groups preserving the group structure, i.e. fyatis

od(a*g b) = ¢(a) xg o(b), Va,b e G.
Thekernelof ¢ is given by
ker o = {a € Gl¢p(a) = ey}
and themageof ¢ is given by
im¢ = {¢(a)|a € G}.
Remark 5.2. More generally, we can defing K') < H as
O(K) ={o(a)la € K}
for any subgroupgs < G and
¢~ (K) = {a € G|¢(a) € K}
for any subgroupgs’ < H.
Example 5.3. The exponential function is a homomorphisgp : C — C*. We have that the

unit circle S* is a subgroup irfC* and the inverse image ¢f' under the exponential map is the
imaginary axisR in C.

Example 5.4. The exponential mapxp : M>(R) — GIly(R) is not a homomorphism, but
induces a homomorphism on the subset of skew-symmeticeratriThe image is the special
orthpogonal grougO»(R).

The fifth lecture is based on the sections 13-15 of Chaptén I First Course in Abstract Algebra [1].
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Definition 5.5 (Normal subgroup)A subgroupH < G is normalif the left and right cosets are
the same, i.e. if any of the following three equivalent ceindss holds:

i) aH = Ha, foralla € G.
ii) aHa™' = H,foralla € G.
it1) a'Ha = H,foralla € G.

Remark 5.6. All subgroups of an abelian group are normal.
Theorem 5.7. The kernel of a homomorphispn G — H is a normal subgroup iwd-.
Proof. If a is any element itz andb € ker ¢, we have that
¢(a™"ba) = ¢p(a™end(a) = ¢(a™"a) = ¢(ec) = en
Hencea'ba € ker ¢ andker ¢ is normal inG. 0J
We will soon see that any normal subgroup is the kernel of doongomorphism.

Definition 5.8 (Factor group) Let H < G be a normal subgroup. THactor group or quotient
group, G/ H is the set of cosets df in GG with the binary operation given by

aH «bH = abH,
fora,bin G.

Remark 5.9. We have to check that the binary operation is well defined. &vesee this since
(aH)(bH) = a(Hb)H = abHH = abH sinceH is normal. The operation is associative since
the operation ows is associative, and the cosét= eH is a unit. The inverse afH is given by
a~'H. Hence the factor group is in fact a group.

Theorem 5.10.1f H < G is a normal subgroup, then there is a natural quotient homguiism
G — G/H whose kernel ig{.

Proof. The homomorphism : G — G/ H is given by¢(a) = aH. Because of the definition
of the operation oii// H we have that

¢(ab) = abH = aHbH = ¢(a)o(b), Va,b e G.
The kernel ofp is given by
kerop ={a € GlaH=H}={a€eGlae H} = H.
O

Theorem 5.11(Isomorphism theorem)f ¢ : G — H is a group homomorphism we have an
isomorphism
G/ ker ¢ — imé.

Proof. Let K = ker ¢ and define a homorphism
¢:G/K— H

by ®(aK) = ¢(a), for a € G. This is well-defined since # X = bK, we haveab™! € K and
¢(ab™t) = eg. Hencep(a) = ¢(b). It is a homomorphism sinc@(aK * bK) = ®(abK) =
¢(ab) = ®(aK)P(bK), for all cosetsi K, bK € G/H.
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The homomorphisnd is injective since the kernel @ is given by
ker® = {aK € G/K|aK = K} = {K}.
Thus® gives an isomorphism a@F/ K onto the imagém® = im¢. O
Example 5.12.We have seen that the alternating grdpis a subgroup of the symmetric group
S,. In fact, it is normal since it is the kernel of the homomosgphikgn : S, — {£1}. By

Theorem 5.11 we get that the factor groip/A,, is isomorphich to the imagg,+-1} when
n > 2.

Example 5.13.Since the special linear growp, (R) is the kernel oflet : Gl,(R) — R*, we
get thatSl,,(R) is a normal subgroup and by Theorem 5.11 the factor gfeLpR)/ S1,(R) is
isomorphic to the imageR*.

Example 5.14.The three permutations of tyf2?] form a subgroug? of G = S, together with
the identity permutation. Thus subgroup is normal sinceytpe is preserved under conjugation.
The quotient7/H has ordeR4/4 = 6 and since there is no element of orden S,, there can
be no element of ordet in the factor grougs/H. HenceGG/H has to be isomorphic t§; and
there is a homomorphism fros, to S3 whose kernel id7.

Definition 5.15. (Center) Thecenterof a groupG is the subgroup given by
Z(G) ={a € Glab = ba, Vbe G}
Theorem 5.16.The centerZ(G), is a normal subgroup af:.

Proof. First check thatZ (G) is a subgroup. Ifi,b € Z(G), andc is any element of7, we get
that

(ab Ne=alc'b) P =abe ) =ach !t = cab™t = c(ab™)

which shows thatb—' € Z(G).
Now if « € Z(G) andb is any element of7, we have

bab™' = abb™' = a € Z(G)
which shows thatZ (G)b~! = Z(G) andZ(G) is normal. O

Definition 5.17 (Simple group) A group issimpleif it has no proper non-trivial normal sub-
groups.

Remark 5.18. Note that this means that all homomorphisms from a simplegeoe injective
or trivial.

Finitely generated abelian groups.In the previous lecture we looked at the structure theorem
for finitely generated abelian groups. Now we are in a situivhere we can understand why
this theorem holds using factor groups.

Theorem 5.19.A finitely generated abelian group is isomorphiég, x Z,,, X - -+ X Z,, X Z",
wheremy, ms, ..., my € Z* andr € N are such thain, dividesm, ., fori =1,2,...,k — 1.
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Sketch of proofLet A be a finitely generated abelian group written additivelnc8i is finitely
generated, we have a surjective homomorphism from a frdealggroupZ™ to A. Let K be the
kernel of this homomorphism. We can find a homomorphism frdne@abelian group” to Z"
mapping ontad< and we can think ofC’ being generated by the rows of a matrix witlcolumns
and possiby infinitely many rows.

Let m; be the smallest positive integer in the subgrou.ajenereted by all the entries of
the matrix. Then any other element in the matrix is divisibjern,; and by elementary row
and column operations we can arrange so tha@appears in the top left corner. Now we can
again use such operatations to eliminate everything etsa the first row and from the first
column. By induction om we can proceed to get a diagonal matrix with entrigsms, . . ., m;,
in the top left corner and the rest of the matrix zero. (Infaet have now seen that we need
only finitely many rows, so the kerné{ is finitely generated.) Moreovet; dividesm for all
1<i<j<k

The row and column operations only changes bases in thelfedaa groups, but we have not
obtained a homomorphisd : Z¥ — Z" such that the image is isomorphickbafter a change
of bases irZZ", which in turn corresponds to another choice of generators i

The theorem now follows from the isomorphism theorem siAde isomorphic taZ" /K =
7" /im®. O

Remark 5.20. Therankof A is the number in the previous theorem and we see from the proof
thatr = n — k. Some of the numbens,,, ms, ..., m; may be equal td and these copies of
the trivial group0 = Z, = Z/Z may be omitted and we can get the same statement with the
additional condition that; > 1.
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