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PART I - GROUPS

(1) (a) A latin square of size n X n is an n X n-array of symbols where each symbol occurs
exactly once in each row and in each column. Show that the multiplication table of

a finite group has to be a latin square. (2)

(b) Let GG be the set of invertible 2 x 2-matrices with coefficients in Zg. Show that G is

a group under matrix multiplication. (2)

(c) Lagrange’s theorem states that the order of a subgroup H of a finite group G divides

the order of (5. Prove this theorem. 2)

SOLUTION

a). Because every element is invertible, we can solve any equation a * z = b uniquely by
multiplication by a ™! to the left. We get a= ! x (a*x) = a~'*b, which by the associativity
is equivalent to (a~**a)*x = a~'xb. Since a"'*xa = e, and exx = 1, we getx = a1 *b.
This means that the symbol b occurs exactly once in the row given by a. In the same way,
we apply multiplication on the right to « * a = b to conclude that every symbol b occurs
exactly once in the column corresponding to a.

b). Matrix multiplication is associative over any ring. The identity matrix, /5, is a unit
and all invertible matrices have a two-sided inverse. The only thing that remains to check
is that the product of two invertible matrices, A and B, is invertible. This is true since

(B'AY)YAB)=B'I,B=B"'B=1,
and similarly (AB)(B™*A™!) = L.
c). We first show that the left cosets of H form a partition of G. This can be done by
introducing the equivalence relation
a~pbesalbe H

We check that this is indeed an equivalence relation.
i) (reflexivity) a 'a = e € H, forall a € G.
i) (symmetry) (a=*b)™' = b7'a and hence a™'b € H < b~'a € H since H is a
subgroup.
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iit) (transitivity) If a='b € H andb~'c € H, we geta™'c = (a7'b)(b"'c) € H.

Now, we check that a ~ b if and only if they are in the same coset. In fact, a~'b e
H&ebeaH.

Since the equivalence classes give a partition of the set, we get that the left cosets
give a partition of the set GG into disjoint subsets. (Of course this also holds for the right
cosets.)

Once we know that the cosets, which all have size |H |, form a partition of GG, we get
that |G| has to be a multiple of |H|.
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(2) Let GG be the group of invertible 2 x 2-matrices with entries in Zg from problem 1(b) and
let G act on Zg X Zg seen as column vectors by matrix multiplication. Let x = (1,0) €

Zﬁ X Z(;.
(a) Determine the stabilizer G,. ! 2)
(b) Determine the orbit Gx. 2)
(c) Use the results of part (a) and (b) to determine the order of G. 2)

SOLUTION

a). The matrices that stabilize z satisfy

F b=l

where the arithmetics is done in Zg. This means that a = 1, ¢ = 0, while b and d are
arbitrary. Now we are only interested in the matrices in G, so they have to be invertible.
This means that d has to be invertible and b can still be arbitrary. In Zg only £1 are
invertible. Thus we have the twelve elements

b 4|

b). The orbit is given by all elements that can be written as

e bl =[]

where the 2 x 2-matrix is invertible. By the usual formula from linear algebra, we know
that if a matrix is invertible, its inverse can be written as

1 d —b
ad —bc |—Cc a

Thus the matrix is invertible if and only if the determinant is invertible. In this setting,
this means that the determinant is ==1. We look for the possible a and ¢ such that we can
find b and d with ad — bc = £1. This is impossible if a and ¢ have a common factor
which is not invertible. There are 3-3 = 9 cases where 2 is a common factorand 2-2 = 4
cases where 3 is a common factor. One of these is common, (0, 0).

When neither 2 nor 3 is a common factor, the equation az — cy = 1 can be solved over
Zg. Thus the orbit consists of all 36 — 12 = 24 pairs (a, ¢), where a and ¢ don’t have 2 or
3 as a common factor.

c¢). We have in general that for a finite group |G| = |Gz| - |G,|. In our case we have
computed the order of the stabilizer to be twelve and the size of the orbit to be twenty-
four. Thus we get

|G| = |Gx| - |G| = 1224 = 288.

IThe stabilizer is also called the isotropy subgroup.
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(3) Let : G — H be a surjective group homomorphism and K < H a normal subgroup.

(a) Show that the inverse image ®~'(K) is a normal subgroup of G. 2)

(b) Show that G/®~(K) is isomorphic to H/K. (2)

(c) Assume that K equals the commutator subgroup [H, H|. Show that ®~!(K) con-

tains [G, G|. Does equality hold? (2)
SOLUTION

a). If ¢ isin ®1(K) and b is any element of G we get that
®(bab™") = @(b)P(a)P(b) !

which is in K since ®(a) € K and K is normal in H. Thus bab™ ! is in ®~*(K) which
shows that ®~!(K) is normal in G.

b). We have the natural homomorphism ¥ : H — H/K and when we compose it with
®, we get Vod : G — H/K. This is surjective since both ® and ¥ are surjective. Thus
we have by the first isomorphism theorem that H/K is isomorphic to G/ ker(V o ®). It
remains to show that ker(¥ o ®) = &~ (K). Indeed, we have that

ker(W o ®) = {a € G|¥(®(a)) =eK € H/K} = {a € G|®(a) € K} = o7 (K).

¢). The commutator subgroup is generated by all the commutators, aba~'b~!, where
a,b € H. It is sufficient to show that the image of any commutator in G is in K. This is
true since
P(aba b1 = B(a)P(b)P(a) (b))

which is a commutator in H. Thus any commutator lies in ®~([H, H]) = &~ }(K).

Another way is to use part (b) and see that H/K is abelian and since G/® ' (K) is
abelian, @' (K) has to contain the commutator subgroup, [G, GI].

Equality can of course hold, for example when @ is an isomorphism. However, it is not
an equality in general. If G and H are abelian, their commutator subgroups are trivial,
but a surjective homomorphism ¢ : G — H does not have to be injective.
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PART II - RINGS

(1) (a) Let F' be a finite field. Assume that —1 is not a square in F'. Prove that 2 or —2is a
square in F'. 2)

(b) Prove that X* + 1 is irreducible in Z[X]. 2)

(c) Let p be a prime number and let IF, be a finite field with p elements. Prove that
X*+ 1is reducible in F,[X]. (Hint: use part (a) when —1 is not a square in F,,.) (2)

SOLUTION

a). If char(F') = 2, then —1 = 1is a square in F. So char(F') = p, an odd prime, and F'
has an odd number of elements (p" for some n > 1). So F* = F'\ {0} has an even number
of elements. We know that F™* is cyclic (any finite subgroup of the invertible elements
of a domain is cyclic). If x generates F™, then the squares in F™* form the subgroup
generated by z2. It is of index 2 in F™* and the unique nontrivial coset consists of the
nonzero nonsquares. So the product of two nonzero nonsquares is a nonzero square. So
if 2 is a nonsquare, then —2 is a square, since —1 is a nonsquare.

b). X* + 1 clearly has no roots in Z (or R). The only possible factorization is as a
product of two polynomials of degree 2. One way to argue is by looking at the complex
roots i%\/ﬁi%zx/i (= e*™*/8 L odd). We get that the factors in R[X] are X?Fv/2X +1,
which aren’t in Z[X].

Another way: if X2+ aX + b is one factor in Z[X], one sees that the other factor must
be X? — aX + b (by looking at the coefficients of X3 and X). Then b* = 1, s0 b = +1,
and a® = 2b = 42, which doesn’t have solutions in Z.

Finally, a separate argument: (X +1)*+1 = X4 4+4X3+6X2%+4X + 2 is irreducible
by the Eisenstein criterion for p = 2, so X 4 4+ 1isirreducible as well.

¢). If —lisasquare f2in[F,, then X*+1 = X*—(—1) = (X?)?— 2 = (X?+f)(X*—f)
in F,[X]. If —1 is not a square, then X* + 1 certainly has no roots in F,. But 2 or —2
is a square in F,. Following the second argument in (b), we find a € F, with a* = 2
or a> = —2. Taking b = +1 resp. —1, we find a factorization in F,[X]. (Alternatively,
X441 = X"4+2X? +1— (£2X?) = (X2 £1)2 — (£2X?) is a difference of two
squares, hence factorable, if £2 is a square.)
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(2) (a) Prove that 3 + 2i is a prime element of Z][i]. )

(b) Prove that F' = Z[i]/Z[i](3 + 2i) is a field. How many elements does I have? (2)

(c) Find a generator of the multiplicative group of F'. (2)
SOLUTION

a). Recall that Z[i] has a Euclidean norm N with N(a + bi) = a® + b?, which is multi-
plicative. The elements with norm 1 are the units +1, 4-i. The ring Z[i] is a UFD (even
a PID). The norm of 3 + 2i equals 13, which is a prime number. It follows directly that
3 + 2¢ is irreducible, hence prime (since the ring is a UFD).

b). Nonzero prime ideals in a PID are in fact maximal, so Z[i]/Z[i](3 + 2i) is a field F.
In F, 13 = (3+ 2i)(3 — 2i) = 0, so char(F') = 13. It is clear that F' has at most 26
elements (a + bi with 0 < a < 12and 0 < b < 1), so in fact F' has 13 elements (the only
possible power of 13). (We also find this using 7(3 + 2i) =8 + ¢ = 0.)

¢). The 13 elements of F' can be thought of as a (modulo (3 + 2i)), with 0 < a < 12.
We try the powers of 2:
2,4,8,16=3,2°=6, 2°=12.

So the order of 2 is 12 and 2 generates F'*. Other generators are 2° = 6, 27 = 11, and
ot =7,
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(3) (a) Prove that the ring R[X]/(X? — X2 4+ 2X — 2) is isomorphic to R x C. ()
(b) Let p be a prime number. Let R be the subring of QQ consisting of the numbers a /b
with a,b € Z and b not divisible by p. Let I be a nonzero ideal of R. Prove that

I = (p™) for some n > 0. Conclude that R has a unique maximal ideal. 4

SOLUTION

a). In a commutative ring R with 1, two ideals [ and J are called relatively prime when
I+J=R(@Ge,l =i+ 7jforsome: € [ and j € J). One always has the inclusion
1J C I N J;equality holds when I and J are relatively prime, since fora € I N J

a=a-1=a(i+j)=ai+ajell
The natural ring homomorphism
R/(INJ)— R/I x R/J, a+(INJ)— (a+1,a+J)
is injective. When I and J are relatively prime, it is surjective:
aj+bi+(INJ)— (a+1,b+J)
if 1 =14+ 7. So, for two relatively prime ideals I and .J, we obtain isomorphisms
R/IJ=R/(INJ)=R/I x R/J,

this is commonly referred to as the Chinese Remainder Theorem.
Now X3 — X2 +2X — 2 = (X — 1)(X? + 2) and the two irreducible factors are
relatively prime in R[X]. By the above, we obtain an isomorphism

R[X])/(X? — X2 4+2X —2) 2 R[X]/(X — 1) x R[X]/(X? +2).

But R[X]/(X—1) = Rvia X +(X—1) — land R[X]/(X?+2) = C via X +(X?+2)
iv/2.

b). We note that R is indeed a subring; the sum and product of two rational numbers
whose denominators are not divisible by p are rational numbers whose denominators
are not divisible by p. The invertible elements are the rational numbers for which the
numerator is not divisible by p either. Hence (a/b) = (p™) if (b is not divisible by p and)
a is exactly n times divisible by p (i.e., a = a’p™ for an integer a’ not divisible by p). If
I is a nonzero ideal, let m be the minimum of the nonnegative integers n thus obtained
from the nonzero elements of /. (The minimum exists.) Then / = (p™). For m = 0, the
ideal (p™) equals R; but the ideal (p) is maximal, and it clearly is the unique maximal
ideal.




