
SF2729 Groups and Rings
Suggested solutions to midterm exam

Tuesday, March 15, 2011

(1) a) Show that there are exactly two non-isomorphic group structures on a set of four
elements directly from basic properties of groups. (2)

b) Draw the Cayley digraph of the symmetric groupS3 using the generators(1 2 3) and
(2 3). (2)

c) The group of upper-triangular invertible matrices of thefield Z3 with three elements
has order12 as well as the dihedral groupD6 given by the symmetries of a regular
hexagon. Show that they are isomorphic. (Recall that the field Z3 can be seen as the
integers modulo3, i.e., with the usual addition and multiplication of residue classes.)
(2)

SOLUTION

a). Assume thatG is a group of order4. Let a be a non-unit ofG. ThenG is cyclic if a
has order4 and there is only one cyclic group of order four up to isomorphic.

By Lagrange’s theorem, we know that the order ofa has to be a divisor of4, but we can
also exclude the possibility ofa3 = e in the following more elementary way. Ifa3 = e,
we have thata generates a cyclic subgroup of order3 leaving just one element outside.
This is impossible, since the3 × 3- subtable of the group table given by the subgroup
already contains the elements of the subgroup in each row andeach column, forcing the
fourth element to be in the last column all the time, violating the condition that each
element occurs only once in each row and column.

If a2 = e, we have to have thatab = c = ba, if the other two non-units areb andc,
sincea is not a unit and we cannot haveab = e or ab = a, since there is a unique inverse
to a and sinceb is not a unit. Now we can fill in all the other entries of the group table
using the property that each element occurs exactly once in each row and column.

b). Let a = (1 2 3) and b = (2 3). We can write all the elements as inS3 asae2be1 ,
where the exponents satisfy0 ≤ e1 ≤ 1 and0 ≤ e2 ≤ 2. (a0b0 = Id, a1b0 = (1 2, 3),
a2b0 = (1 3 2), a0b1 = (2 3), a1b1 = (1 2), a2b1 = (1 3)) The Cayley digraph will be
two directed cycles of length three corresponding to multiplication bya joined by double
arrows corresponding to multiplication byb.
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The digraph can be seen as

a0 −→ a1 −→ a2 −→ a3 = e
l l l l

a0b ←− a1b ←− a2b ←− a3b = e

where the left and right ends are to be identified. Horisontalarrows correspond to multi-
plication bya and vertical arrows to multiplication byb, where we use thatba = a−1b.

c). We need to find a matrix of multiplicative order6, which we can do by seeing that
it should be a matrix which is not diagonalizable and with eigenvalues of order2, i.e.,
2 = −1. Hence we have two choices

r =

(

2 1
0 2

)

or r =

(

2 2
0 2

)

.

Now the rotations of the hexagon should correspond to powersof r and the reflections to
the remainding6 matrices, which we can get from the powers ofr by multiplying by one
matrix of determinant2.

Now, we can check that we get all12 invertible matrices as

r0 =

(

1 0
0 1

)

, r1 =

(

2 0
1 2

)

, r2 =

(

1 2
0 1

)

,

r3 =

(

2 0
0 2

)

, r4 =

(

1 0
2 1

)

, r5 =

(

2 1
0 2

)

,

and

sr0 =

(

2 0
0 1

)

, sr1 =

(

1 0
1 2

)

, sr2 =

(

2 1
0 1

)

,

sr3 =

(

1 0
0 2

)

, sr4 =

(

2 0
2 1

)

, sr5 =

(

1 2
0 2

)

,

where we have used

s =

(

2 0
0 1

)

.

(2) LetG = Sl2(Z) be the group of integer matrices of size2× 2 with determinant one.
a) Show thatG acts onZ2 seen as1×2-matrices by matrix multiplication by the inverse

on the right, i.e., byA.
(

m n
)

=
(

m n
)

A−1. (2)
b) Determine the stabilizer1, Gx, wherex =

(

1 2
)

. (4)

1calledisotropy subgroup in the text-book.
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SOLUTION

a). We have that the inverse of an integer matrix of determinant one is again an integer
matrix since the inverse equals the adjoint matrix in this case. Hence

(

m n
)

A−1 is an
integer vector.

We now check thate = I2 acts trivially since

(

m n
)

I−1

2
=

(

m n
)

(

1 0
0 1

)

=
(

m n
)

for all (m, n) ∈ Z
2.

For two matricesA, B ∈ G we have that(AB)−1 = B−1A−1 which gives us that for
an integer vectorx = (m, n) ∈ Z

2, we get

(AB).x = x(AB)−1 = xB−1A−1 = (xB−1)A−1 = A.(B.x).

b). The stabilizer of(1, 2) is given by the matrices with determinant one such that

(1, 2)A−1 = (1, 2)

Since this means that(1, 2) is a left eigenvector of eigenvalue1, we get that the other
eigenvalue must be1 as well as the product of the eigenvalues equals the determinant.
Hence the characteristic equation isλ2 − 2λ + 1 = 0 and we get that the trace equals2.
Such matrices can be written asA−1 = I + N , whereN is a nilpotent matrix such that
(1, 2) is in the left kernel. This means that

N =

(

2a 2b
−a −b

)

and2a− b = 0, i.e.,

A−1 = I + a

(

2 4
−1 −2

)

and

A = I − a

(

2 4
−1 −2

)

=

(

1− 2a −4a
a 1 + 2a

)

for any integera.

(3) a) LetH be a normal subgroup of a groupG. Give the definition of the factor group
G/H and prove that this is a well-defined group. (2)

b) LetG be the group given by the generatorsa andb with the relationsa3 = e, b3 = e
andabab = e, i.e., the factor group of the free groupF [a, b] by the smallest normal
subgroup containing{a3, b3, abab}. Show thatG is isomorphic to the alternating
groupA4. (4)
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SOLUTION

a). The factor groupG/H is defined in the following way whenH ≤ G is a normal
subgroup. As a set,G/H is the set of cosets ofH in G. with the binary operation given
by

aH ∗ bH = abH,

for a, b in G.
This binary operation is well defined since

(aH)(bH) = a(Hb)H = abHH = abH.

where we have used thatH is normal. The operation is associative since the operationon
G is associative,

aH ∗ (bH ∗ cH) = aH ∗ (bcH) = a(bc)H = (ab)cH = (abH) ∗ cH = (aH ∗ bH) ∗ cH.

and the cosetH = eH is a unit since

eH ∗ aH = eaH = aH = aeH = aH ∗ eH.

The inverse ofaH is given bya−1H since

aH ∗ a−1H = aa−1H = eH = a−1aH = a−1H ∗ aH.

Hence the factor group is in fact a group.

b). In order to find an isomorphism, we need to find which elements of A4 that corre-
spond toa andb. Since they have order3, there are eight natural candidates,(i j k). They
come in pairs that form the four subgroups of order3 together with the unit. We can
pick any two from different subgroups, for exampleσ = (1 2 3) andτ = (2 3 4). The
composition is

στ = (1 2 3)(2 3 4) = (1 2)(3 4)

which has order2, so we get the relationστστ . Thus we know that there is a well-defined
homomorphism fromG to A4 satisfyinga 7→ σ andb 7→ τ . Sinceσ andτ generateA4,
this homomorphism is surjective, and it remains to show thatit is injective. (We can see
thatσ andτ must generateA4 sinceσ = s1s2 andτ = s2s3, which shows that all products
of two adjacent transpositions there sinceστ = s1s3.)

In order to see that the homomorphism is also injective, we may look at the expressions
for all the elements ofA4 as products of the generators. We have

σ = (1 2 3) τ = (2 3 4) σ−1 = (1 3 2) τ−1 = (2 4 3)
στ = (1 2)(3 4) τσ = (1 3)(2 4) σ−1τ = (1 3 4) στ−1 = (1 2 4)
τσ−1 = (1 4 2) τ−1σ = (1 4 3)

and
στ−1σ = σ−1τσ−1 = τσ−1τ = τ−1στ−1 = (1 4)(2 3).

In G we have the relationabab = e, which we can rewrite as

ab = b−1a−1
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and we can use it together witha3 = b3 = e to deduce that

(a−1b)3 = a2ba2ba2b = a(ab)a(ab)a(ab) = a(b−1a−1)a(b−1a−1)a(b−1a−1)
= ab−3a−1 = aa−1 = e.

We get from this that(a−1ba−1)(ba−1b) = e, which implies that

ba−1b = (a−1ba−1)−1 = ab−1a.

We can write any element inG as a product ofa, b, a−1, b−1, i.e., as

ai1bi2ai3 · · · bik

whereij = ±1. If there are two adjacent factors with the same sign of the exponent,
we can use the relationab = b−1a−1 to reduce the word to a shorter word. If there are
no adjacent factors with the same sign of the exponent, we canuse the relationba−1b =
ab−1a to reduce the length of the word. Hence any word of length fouror longer can be
reduced and the only words that cannot be reduced are the oneslisted above written inσ
andτ . ThusG is no larger thanA4, which shows that they have to be isomorphic due to
the surjective homomorphismG→ A4.


