Homework assignment 1

Published on September 1 , 2011 Deadline for return September 15, 2011

Hand calculation of the expansion in the Haaar system $\{h_{kj}\}$,

The Haar System of function is given by

$$h_{kj} = 2^{j/2} h(2^j x - k),$$

where

$$h(x) = \begin{cases} -1 & \text{for } 0 \le x < \frac{1}{2}.\\ 1 & \text{for } \frac{1}{2} < x \le 1. \end{cases}$$

Given is the following function f on the interval $I_0 = [0, 1]$.

$$f(x) = \begin{cases} x & \text{for } 0 \le x \le \frac{9}{16}, \\ \frac{1}{4} & \text{for } \frac{9}{16} < x \le 1. \end{cases}$$

In the following N = 4. The drawing of the graphs below could be done in the same diagram if using different colours.

- 1. Draw the graph of f.
- 2. Divide the interval I_0 into 2^N equally size intervals. Do the projection f into a step-wise constant auction f_0 on those intervals.(Minimising the norm $||f f_0||$.). Draw the graph of f_0 .
- 3. Make a Haar wavelet expansion of f_0 using functions h_{kj} , $j = N 1, \ldots, 0$ were and, the characteristic function χ_{I_0} of the unit interval. List the corresponding coefficients. (Don't expand $\sqrt{2}$ numerically)
- 4. Verify that f_0 can be exactly reconstructed from those wavelet coefficients.
- 5. Replace the smallest 8 (of totally 16) coefficients by zero and make an approximate reconstruction f_A from the remaining 8 coefficients. Draw the graph of f_A .
- 6. Error estimation: Estimate the the L^2 norms $||f||, ||f f_0||, ||f_0 f_A||$ and $||f - f_A||$.
- 7. Use a hand calculator to compute the signal-to-noise ratio

$$SNR = -20^{-10} \log \frac{||f - f_A||}{||f||}$$