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Here comments and reading instructions following the course book

• Manifolds and Differential Geometry, Jeffrey M. Lee.

Other recommended books are

• Introduction to smooth manifolds, John M. Lee,
• An introduction to differentiable manifolds and Riemannian geometry, William

M. Boothby,
• Differentialgeometrie, Christian Bär.
• Foundations of differentiable manifolds and Lie groups, Frank W. Warner
• Semi-Riemannian geometry with applications to relativity, Barrett O’Neill

Lecture 1, September 5. The goal of the first lecture was to introduce dif-
ferentiable manifolds and smooth maps between them. Section 1.1 collects some
preliminaries, read carefully and watch out for misprints. Section 1.2 introduces
topological manifolds which are locally euclidean topological spaces. Here the topo-
logical concepts of Hausdorff, second countable, and paracompact spaces are intro-
duced, skip this if unfamiliar (the paracompactness property is crucially used for
the construction of a partition of unity in Section 1.5). The fundamental definitions
for differentiable manifolds come in Section 1.3: chart, atlas, change of coordinate
maps, smooth structure. It is important to understand carefully the concepts of
equivalent atlases, and how a maximal atlas is related to a smooth structure. Sec-
tion 1.4 introduces smooth maps, the definition involves the fundamental idea of
defining a property to hold on a manifold if it holds when the objects are transported
to euclidean space using charts (for example there is a similar characterization of
the topology induced by an atlas, see discussion after Lemma 1.30). Special cases of
the definition cover diffeomorphisms and smooth functions. In Definition 1.57 the
partial derivatives ∂f/∂xi of a function f is defined in a chart (U, x), it is important
to understand in detail how the chain rule gives the relation to partial derivatives
in a second chart (V, y). On pages 26-27 there is a very interesting discussion on
equivalent and non-equivalent differentiable structures.

Further reading. Even though I did not have time to mention it in the lecture you
must read the very important Section 1.5. Smooth cut-off functions are constructed,
and you should read the proof carefully. They are used to restrict a smooth function
on a manifold to a function with support in a chart, while keeping the smoothness
property. In Definition 1.70 a partition of unity is described, note that paracompact-
ness is used in the existence proof. With a partition of unity any function smooth
function on a manifold can be written as a sum f = f · 1 = f

∑
α ϕα =

∑
α fϕα,
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where each term fϕα has support in a chart and the terms can thus be studied
further as smooth functions with compact support on Rn.

Recommended exercises. To help understand the material I suggest that you work
through the following examples and exercises in the book: 1.38, 1.39, 1.40, 1.41,
1.42, 1.56, 1.61. (These are not homework exercises to be handed in, and of course
there are too many to solve all of them in full detail. For the preliminary version
of the book the corresponding examples and exercises are: 1.29, 1.30, 1.31, 1.32,
1.35, 1.53, 1.50.)

Lecture 2, September 12. In Section 1.7 regular submanifolds are defined as an
answer to the question “when is a subset of a manifold also a (sub)manifold?”. As
with most definitions on a smooth manifold the property is translated into a prop-
erty on Rn using charts: in a chart a submanifold is a subset of an affine subspace
of Rn. In Section 2.1 different definitions of the tangent vector space at a point p in
a smooth manifold M are given. The first as equivalence classes of smooth curves
through p. The second as vectors in Rn associated with a chart around p, together
with a transformation property under changes of chart. The third as derivations
(at p) acting on smooth functions on the manifold. The three definitions each have
advantages and disadvantages, but Section 2.2 gives isomorphisms showing that
they all give the same tangent vector space TpM . Think through these isomor-
phisms carefully. (Furthermore, in this section the cotangent space is introduced,
we will come back to this in the next lecture.) In Section 2.3 the tangent linear
map Tpf : TpM → Tf(p)N of a smooth map f : M → N is defined (other notation
for Tpf such as dfp, Dfp, (f∗)p, f

′(p) is also used). The definition of Tpf depends
on which definition of tangent vectors is used, you must check that you understand
each of the definitions and how to prove the chain rule Tp(g ◦ f) = Tf(p)g ◦ Tpf in
each case. Note a misprint in the definition Tangent map III: the defined derivation
is an element of TqN ! It is interesting to note (at least for the first and third defi-
nitions) how simple the definitions of Tpf are and how easy it is to check the chain
rule, the complications are hidden in the somewhat involved definitions of tangent
vectors. This section also contains a version of the important inverse mapping
theorem, Theorem 2.25.

Further reading. You should have a look at Section 1.8 where manifolds with bound-
ary are introduced, the definition is a straight-forward generalization of the defini-
tion of a smooth manifold (without boundary). Manifolds with boundary will be
important in particular when we later see how to integrate differential forms and
find the general Stokes’s Theorem. You should also look through Section 2.4 which
contains a careful identification of the tangent space of a product manifold.

Recommended exercises. As mentioned above: (i) Work out in detail the isomor-
phisms between the three definitions of the tangent space, (ii) check that the three
definitions of the tangent map are equivalent, (iii) check the chain rule using the
three definitions, (iv) write out in coordinates the tangent map in charts (second
definition).

Lecture 3, September 19. In this lecture we covered three subjects. First the
definition of cotangent vectors and the cotangent space in Section 2.2. Although
TpM and T ∗pM have the same dimension and therefore are isomorphic as vector
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spaces there is no “natural” choice of isomorphism, only using some further in-
formation such as the choice of a chart or a Riemannian metric can we define an
isomorphism TpM → T ∗pM . With a chart around p given, a basis {dxi} of T ∗pM

is defined as the dual basis to the basis {∂/∂xi} of TpM . The differential df(p) at
p of a function f : M → R is introduced in Section 2.3. It is a cotangent vector
and the definition is a slight simplification of the definition of the tangent map Tpf .
Note the discussion on the middle of page 69: the differentials dxi of the coordinate
functions do have the same property as the dual basis. The second theme of the
lecture was critical points and values, and the level submanifold theorem. In Sec-
tion 2.5 critical points and values are introduced, and Sard’s theorem is stated. The
important Theorem 2.4.1 in Section 2.6 gives a way of checking that the level sets
of a smooth map are regular submanifolds. Look at examples 2.43 and 2.44. The
third subject of the lecture was the tangent bundle in Section 2.7, read carefully the
construction of charts and the proof of Proposition 2.55. The parallel construction
for the cotangent bundle is on page 85-86. Vector fields are sections of the tangent
bundle and are introduced in Section 2.8 (note that the differential df of a function
is a section of the cotangent bundle). A vector field on M can be interpreted as
a global derivation on C∞(M) (Def. 2.69), the Lie derivative of a function with
respect to a vector field is introduced, LXf = Xf = df(X), (Def. 2.70).

Further reading. Have a look at Section 2.5.1 where the Morse Lemma is stated
and proved. This important result is fundamental in differential topology, see http:
//en.wikipedia.org/wiki/Morse_theory. Also, read the warning on page 121-
122: the basis vector ∂/∂x1 does not only depend on the coordinate function x1

but on the entire coordinate system (x1, . . . , xn).

Recommended exercises. Fill in the details of Example 2.44. Exercises 2.54, 2.56.

Lecture 4, September 26. Todays lecture was about vector fields, Section 2.8
in the book. A vector field is a smooth map X : M → TM such that Xp ∈ TpM
for all p ∈ M . Theorem 2.72 gives an alternative characterization of vector fields
as (global) derivations on C∞(M). From Theorem 2.73 and Corollary 2.74 it then
follows that the commutator (or Lie bracket) [X,Y ] of vector fields X,Y is again
a vector field. A priori the composition of two vector fields should be a second
order derivation acting on functions, but the commutator turns out to be of first
order and thus a tangent vector. The Lie bracket is bilinear, skew-symmetric, and
satisfies the Jacobi identity, see Proposition 2.76. This makes the vector space of
vector fields on M into a Lie algebra. Subsection 2.8.1 treats integral curves and
flows. An integral curve of a vector field is a curve whose velocity vector at each
point coincides with the vector field at the point. Just as tangent vectors naturally
appear as derivatives of curves, vector fields appear as derivatives of flows. The
concept of a (complete) flow and its associated vector field is on page 95. The
reverse construction of a (maximal) flow for a given vector field is on pages 95-101.
A vector field is complete if its flow (and thus all its integral curves) can be defined
for all time. Note the important Lemma 2.99: a vector field with compact support
(for example any vector field on a compact manifold) is complete. The Lie derivative
is introduced in Subsection 2.8.2. It has a characterization in terms of flows: the
Lie derivative LXY of Y with respect to X is the derivative of Y along the flow of
X, read the proof of Proposition 2.105 carefully. Note that the definition of LXY
requires both X and Y to be vector fields, it is not sufficient to know the value Xp

http://en.wikipedia.org/wiki/Morse_theory
http://en.wikipedia.org/wiki/Morse_theory
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of X at a point to compute the Lie derivative with respect to X. Therefore this
is not a satisfactory construction of “directional derivative” of vector fields, and in
fact no such thing can be constructed without the introduction of some additional
structure on the manifold. Theorem 2.109 states that vector fields commute if and
only if their flows commute, Theorem 2.112 then gives a further description of the
Lie bracket as a measure of how much the flows fail to commute. Finally, Theorem
2.113 tells us that commuting vector fields which are also linearly independent are
coordinate vector fields for some chart.

Further reading. In Section 2.9 covector fields or 1-forms are introduced. We will
return to this later in connection with Chapter 8, but you should read this section
now. 1-forms are the correct objects to integrate along curves, see Section 2.10
(this should all be familiar from multi-variable calculus!) Section 2.11 contains a
short discussion on moving frames or frame fields.

Recommended exercises. (i) Lie Bracket in coordinates, Exercise 2.77. (ii) Com-
pleteness of vector fields, Exercise 2.90. (iii) Prove Theorem 2.112. (iv) Problem
13, page 123 (this defines the Hessian, or the second derivatives, of a function at
a point where the first derivatives already vanish. In general second derivatives
cannot be defined without further structure on the manifold.) (v) Show that the
vector fields X1 = x∂/∂y− y∂/∂x and X2 = x∂/∂x+ y∂/∂y on R2 commute, then
find local coordinates for which they are the coordinate fields.

Lecture 5, October 3. This lecture was about immersions and submanifolds,
Sections 3.1-3.2 in the book. An immersion f : M → N is a smooth map such
that Tpf : TpM → Tf(p)N is injective for each p ∈ M . Further, f is said to be
an embedding if f : M → F (M) is a homeomorphism. The image f(M) of an
embedding is a regular submanifold as defined in Section 1.7. After embeddings
also injective immersions are important. If M is compact then an injective immer-
sion is automatically an embedding (Exercise 3.6). Definition 3.13 defines S ⊂ M
to be an immersed submanifold if S is a smooth manifold and the inclusion map
S → M is an injective immersion. In the book two further types of immersions
are introduced: proper and weak embeddings. The corresponding submanifolds
are called proper and weakly embedded. These are less important than regular
and immersed submanifolds, but reflects the fact that several different definitions
of submanifolds are used in the literature. The (weak) Whitney imbedding theo-
rem, Theorem 3.21, states that every compact manifold M of dimension n can be
embedded in R2n+1. The proof uses Sard’s theorem which for maps f : N1 → N2

tells us that the image f(N1) has measure zero if dimN1 < dimN2 since then all
points in N1 are critical points. Note that the induction part of the proof can be
extended one step further for the immersion property (but not for injectivity) to
conclude that M can be immersed into R2n. Specifically, we can find z outside the
image of the map df : TM → Rd also if d > 2n. The strong Whitney embedding
and immersion theorems improves the above by one dimension and states that M
can be embedded in R2n and immersed in R2n−1.

Further reading. Read Section 3.3 on submersions.

Recommended exercises. Exercises 3.6-3.9, 3.12 on page 129 (some of these are
mainly exercises in topology, skip if unfamiliar!), Problem (2) on page 140.
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Lecture 6, October 10. In Chapter 4 geometric concepts on smooth manifolds
are introduced in two simple special cases, curves and hypersurfaces in Euclidean
space. We will come back to these constructions in general in Chapter 13.

From Section 4.1 we need only learn the definition of parametrized curves, their
length, curvature etc., you may skip the material after Definition 4.4. Section 4.2
starts with the definition of the standard covariant derivative ∇ of vector fields
on Rn. The construction relies on the fact that there is a constant frame field
ê1, . . . , ên defined on all of Rn, so that the derivative of a vector field is computed
by differentiating its coefficients. This construction is not possible in general on
a smooth manifold. Near a point there are always two unit normal fields on a
hypersurface M ⊂ Rn, the hypersurface is orientable if they can be extended to all
of M . For hypersurfaces in Euclidean space the curvature is completely encoded
in the bending of the unit normal field N . This bending is computed by the shape
operator SN (Vp) := −∇VpN , which is a linear map from TpM to itself. To compute
the derivative here we extend the vector field N to an open neighborhood of p in Rn,
see the last lines on page 154. The shape operator is self-adjoint with respect to the
induced Riemannian metric on M , read the proof of Proposition 4.19. Proposition
4.25 relates the curvature of a curve in M to the shape operator of M , the normal
part of its acceleration vector is determined by the shape operator of M , see the
discussion at the end of page 158. If the curve has only got a normal component
of its acceleration then it is a geodesic, see definition 4.27. You may skip the rest
of the section after this definition.

Further reading. Have a look at the rest of Section 4.1, pages 147-152, and the rest
of Section 4.2, pages 160-165.

Recommended exercises. Problem (13), page 188.

Lecture 7, October 17. This lecture covered Section 4.3. The Levi-Civita covari-
ant derivative on a hypersurface M ⊂ Rn is defined by ∇XpY := projTpM ∇Xp

Y
where Xp ∈ TpM , Y is a vector field, and projTpM denotes orthogonal projection

onto TpM . The Gauss formula (4.2) relates ∇, ∇ and the shape operator SN .
The Levi-Civita covariant derivative is torsion free and metric, and it is uniquely
defined by these properties (see Proposition 4.43). In a chart ∇ is specified by the
Christoffel Symbols, see bottom of page 167, they can be computed in terms of the
metric coeffiencts gij . It is a very good exercise to deduce the important formula
(4.6) on page 168. A variation of the definition of ∇ is the Levi-Civita covariant
derivative along a curve. This leads to the concept of a parallel vector field along
a curve (Definiton 4.6), and it is easy to check that a curve is self-parallel if and
only if it is a geodesic. The identity (4.8) for the ambient covariant derivative on
Rn is a fancy way of formulating the fact that partial derivatives are on Rn are
independent of order, the last term with the Lie bracket [X,Y ] compensates for
the fact that the first two terms involve derivatives of X and Y . From (4.8) and
the Gauss formula one finds the Gauss curvature equation (4.10) and the Codazzi-
Mainardi equation (4.11). The Riemann curvature tensor R(X,Y )Z is defined as
the left hand side of the Gauss curvature equation and measures the failure of the
covariant derivatives ∇X and ∇Y to commute. One should note: (i) even though it
is defined as a combination of derivatives R(X,Y )Z depends only on the pointwise
values of its arguments (since this is true for the right hand side of the Gauss cur-
vature equation), (ii) the curvature tensor depends only on the Riemannian metric
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on M and not directly on the imbedding M ⊂ Rn (since this holds for ∇), (iii) the
Gauss curvature equation identifies the intrinsic curvature of M measured by R
with the bending of M in Rn measured by the shape operator.

Further reading. Read Section 4.4, where an interpretation of the mean curvature
as the first variation of area is found. In Definition 4.59 a hypersurface M ⊂ Rn is
defined to be minimal if its mean curvature vanishes identically.

In the exercise session we looked at hyperbolic space as the hyperboloid in
Minkowski space. The computation of its second fundamental form and its geodesics
are similar to the same computations for the round sphere Sn−1 in Rn. A very
nice discussion of these spaces can be found in the lecture notes by Christian
Bär, pages 88-98: http://geometrie.math.uni-potsdam.de/documents/baer/

skripte/skript-DiffGeoErw.pdf. In particular the shape operator is computed
on the top of page 90, and the geodesics are found in Lemma 4.5.2.

Recommended exercises. Exercise 4.40 (page 166), Exercise 4.42 (page 168).

Lecture 8, October 24. In this lecture we discussed tensors and tensor fields
on manifolds. Tensors are multilinear maps taking tangent vectors or 1-forms as
arguments. An example is the Riemannian curvature tensor introduced in the last
lecture. There are two equivalent constructions, the first with pointwise vectors
or 1-forms as arguments, the second with vector or 1-form fields as arguments.
In Section 7.1 tensors as multilinear maps are introduced in a general algebraic
setting, read this entire section very carefully! In Section 7.2 tensors on a manifold
are defined by applying the tensor construction to the individual tangent spaces to
produce T rs (TpM). These vector spaces are the fibers of a vector bundle T rs (TM),
and a tensor field is a section of this vector bundle. The crucial ingredient here is
that the change of coordinate maps for an atlas of M will give first a transformation
rule for tangent vector components in different charts, and thereby a transformation
rule for the components of a tensor. The important Exercise 7.28 gives an example
of this. In Section 7.3 tensor fields on M are defined by a direct global definition,
they are defined to be elements of T rs (X(M)). In Section 7.4 the two definitions
are shown to be equivalent. This follows from the fact that a globally defined
tensor field only depends on the point-wise values of its arguments, as formulated
in Proposition 7.32.

Further reading. For more details on modules and multilinear algebra have a look
at Appendix D, pages 649-662.

Recommended exercises. Exercise 7.11 (page 313), Exercise 7.16 (page 315), Exer-
cise 7.28 (page 321), Exercise 7.33 (page 326).

Lecture 9, October 31. We continued the discussion on tensors with Section 7.5
where the Lie derivative of tensor fields is constructed in two ways. The first con-
struction (as a “tensor derivation”) uses the algebraic operations of contraction and
tensor product to extend the Lie derivative from functions and vector fields to gen-
eral tensor fields. With this method one can also extend the Levi-Civita covariant
derivative to general tensor fields. The second definition of the Lie derivative is
as the derivative along the flow of a vector field, see (7.11). In Section 7.6 metric
tensors are introduced. At the moment a main reason to discuss metric tensors

http://geometrie.math.uni-potsdam.de/documents/baer/skripte/skript-DiffGeoErw.pdf
http://geometrie.math.uni-potsdam.de/documents/baer/skripte/skript-DiffGeoErw.pdf
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and (semi-)Riemannian metrics on a manifold is that they give type-changing iso-
morpism of tensors. This is discussed on pages 333-336. Differential forms are
alternating covariant tensor fields. In Section 8.1 the relevant linear algebra is dis-
cussed. Note in particular Lemma 8.6 where the wedge product is related to the
determinant, and the Theorem 8.8 where a basis for Lkalt(V ) is given. On page 353
the determinant of a linear map λ ∈ L(V, V ) is defined as the induced pull-back
map on the 1-dimensional vector space Lnalt(V ), where n = dim(V ). Further, an ori-
entation on V is defined to be an equivalence class of non-zero elements ω ∈ Lnalt(V )
where ω1 ∼ ω2 if ω1 = cω2 for c > 0. Or, an orientation is a a choice of component
of Lnalt(V ) \ {0}.

Further reading. Have a look at Section 8.1.1 where alternating tensors are con-
structed as the Grassman algebra.

Recommended exercises. Exercise 7.54 (page 334), Exercise 8.15 (page 353).

Lecture 10, November 7. In Section 8.2 the vector bundle Lkalt(TM)→M are
constructed using the standard procedure. The sections of this bundle are called
differential k-forms on M and the space of such is denoted by Ωk(M). For a map
f : M → N there is a an induced pull-back map f∗ : Ωk(N) → Ωk(M). Have
a careful look at the formula on page 362 for pull-back in local coordinates, this
involves “partial Jacobi determinants” of the map f . In the case k = dimM =
dimN it involves the (full) Jacobi determinant of f . In Section 8.3 the exterior
derivative d on forms is introduced. It is defined by its properties in Theorem 8.37,
note in particular the expression in local coordinates. Read the proof of Lemma
8.39 which states that d commutes with pull-back.

Orientations are introduced in Section 8.7. In the book the case of general vector
bundles E →M is treated, we need only consider the tangent bundle. Proposition
8.59 tells us that there is ω ∈ Ωn(M), n = dimM , with ωp 6= 0 for all p ∈ M
if and only if there is an atlas for M for which all transition maps have positive
determinants. An equivalence class [ω] of such ω gives an orientation of TM and of
M . There seems to be some confusion in Definition 8.67: an oriented atlas should
be an atlas for which all transition maps have positive determinant (the description
in this definition is equivalent to a positively oriented atlas).

Further reading. Read the proof of Cartan’s formula for the Lie derivative of dif-
ferential forms, LX = d ◦ iX + iX ◦ d, in Section 8.6.

Recommended exercises. Problems (6), (11), page 388-389. (With integration of
forms introduced in the next chapter we will have a tool to decide that ω is not
exact.)

Lecture 11, November 21. Today we discussed integration of differential forms
over oriented manifolds, as defined in the beginning of Chapter 9. For a manifold
with an oriented atlas the integration of a form in local coordinates does not depend
on the particular chart, this is the computation on page 392. In Definition the
integral is defined using an oriented atlas and a partition of unity. Proposition 9.3
tells us that it is independent of all choices. For explicit computations it is usually
impossible to compute with a partition of unity. By removing a subset of measure
zero from the manifold one can compute the integral using disjoint charts and no
partition of unity, see Theorem 9.7. In Section 9.1 Stokes’ Theorem is proved. This
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relates the integral to the exterior derivative by
∫
M
dω =

∫
∂M

ω. The proof of
Stokes’ theorem consists of first studying the special case where M is the euclidean
half-space. The general case then follows by the definition of the integral through
a sum of local contributions, together with the fact that the boundary has the
orientation induced by the outward pointing normal vector field. See Section 8.7.1
for the definition of the induced orientation on the boundary.

Further reading. We leave Chapter 9 after Stokes’ Theorem, but most of the re-
maining sections are very interesting. In Section 9.2 the divergence of a vector
field is defined (it depends on a choice of volume form, for example as given by
a Riemannian metric), and a divergence theorem is proved. In Section 9.3 the
topological implications of Stokes’ theorem is discussed.

Recommended exercises. Problem (1), page 437. Further, show that ω is not exact
(compare problem (11) on page 389.)

Lecture 12, November 28. In this lecture we first computed an explicit exam-
ple illustrating Stokes’ Theorem. Then we started the final section of this course
which is Chapter 13 on Semi-riemannian geometry. We are primarily interested
in two special cases of semi-riemannian metrics. First the riemannian case where
the inner product is positive definit (and defines a norm of vectors), second the
Lorentzian case where the metric has one negative direction (which models a space-
time with one time dimension). In the beginning of Chapter 13 the casual type
(spacelike/lightlike/timelike) of tangent vectors and curves are defined. In Defini-
tion 13.5 the length of a curve is defined, this definition is meaningful when the
curve has a casual type. For curves in a riemannian manifold it has the ordinary
meaning of length, for timelike curves in a Lorentzian manifold it means the proper
time for an observer represented by the curve. In Section 13.1 the Levi-Civita
connection ∇ of a Riemannian metric is introduced. We have seen this before in
Section 4.3, the difference here is that it is defined uniquely as a connection which
is torsion free and respects the given semi-riemannian metric. The existence and
uniqueness follows from the important Koszul formula in Theorem 13.9. Given a
curve c : I → M we say that a vector field X : I → TM along c is parallel if
∇∂/∂tX = 0. This is an ordinary differential equation which has a unique solu-
tion X(t) given initial data X(0) = X0 ∈ Tc(t0)M . The parallel transport map
P (c)tt0 : Tc(t0)M → Tc(t)M is defined by P (c)tt0(X0) := X(t).

Further reading. Jump ahead and have a look at Section 13.6 on Lorenzian geom-
etry.

Recommended exercises. Exercise 13.14 (page 552), Exercise 13.15 (page 553).

Lecture 13, December 5. We continued the discussion on Semi-Riemannian ge-
ometry by introducing the curvature tensor R, Section 13.2. The first geometric
interpretation of R is that it is the obstruction for the manifold to be locally iso-
metric to Rnν , see Theorem 13.18. For a more elementary proof of this theorem,
see the online supplement to the course book, http://www.ams.org/bookpages/
gsm-107/Supp.pdf, page 135. Very important are the symmetries of R, stated
in Theorems 13.19 and 13.20. The sectional curvature K (page 557) contains the
same information as R (Proposition 13.27). The Ricci curvature is a trace of R
and is a symmetric 2-tensor (Definition 13.29). Note two misprints on page 559

http://www.ams.org/bookpages/gsm-107/Supp.pdf
http://www.ams.org/bookpages/gsm-107/Supp.pdf
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in the book: first the Ricci tensor is a (0, 2)-tensor, second Ric ≥ k means that
Ric(v, v) ≥ k〈v, v〉 for all v ∈ TM .

In Section 13.4 a curve γ : I → (M, g) is defined to be a geodesic if its tangent
vector is parallel along the curve, ∇γ̇ γ̇ = 0. With a given initial vector v ∈ TpM
there is a unique geodesic γv with γ̇v(0) = v defined over a maximal interval, see
Proposition 13.50. The exponential map is the smooth map which takes v to γv(1),
this is a diffeomorphism of a neighbourhood of 0 ∈ TpM with a neighbourhood of
p ∈ M . Choosing a basis of the vector space TpM gives us normal coordinates
around the point p, see page 572.

Further reading. Read Section 13.3 on Semi-Riemannian submanifolds. The situa-
tion here is very similar to that in Chapter 4.

Recommended exercises. Exercise 13.54 (page 569), Exercise 13.57 (page 570).

Lecture 14, December 12. In Section 13.5 the distance function on a Riemann-
ian manifold is introduced, see (13.8). The distance between points p and q is the
infimum of lengths of paths from p to q. In general this infimum need not be at-
tained. Proposition 13.86 tells us that the distance to the center point in a normal
coordinate system is attained and is given by the radial geodesics. In general, if
the distance between points is attained by a curve, then Proposition 13.88 tells us
that this curve must be a geodesic.

Jacobi fields are introduced in Section 13.7. They arise from the “linearization”
of the equation for geodesics in (M, g). The equation for Jacobi fields (Def. 13.108)
is a second order linear ordinary differential equation, so the set of solutions is a
vector space and a solution is uniquely determined by initial data (Thm. 13.109).
Theorem 13.110 says that the Jacobi fields along the geodesic γ split into tangential
and normal parts. Conjugate points along a geodesic γ are introduced in Defini-
tion 13.116, and characterized in Theorem 13.117. Note that points p, q on γ are
conjugate if and only if there is a non-trival variation of γ through geodesics which
keeps the points p, q fixed to first order.

A main theme of Semi-Riemannian geometry is to use information about the
curvature tensor to deduce statements about the geometry or the topology of the
manifold. We jump to the end of Section 13.8, page 611-612, to find one result of
this type. Proposition 13.137 tells us that a Riemannian manifold for which the
sectional curvature is nowhere positive has no conjugate points on any geodesic.

Further reading. Have a look at Section 13.13 where a short introduction to General
Relativity is given. In particular Jacobi fields are discussed in the section on tidal
forces, page 630.

Recommended exercises. Problems (1) and (2), page 634.

Lecture 15, December 19. In the last lecture we discussed three classical theo-
rems of Riemannian geometry from Section 13.9.

The Hopf-Rinow theorem (Theorem 13.139) states that different concepts of
completeness are equivalent for a Riemannian manifold. A corollary is that any
compact manifold is geodesically complete, so at any point the exponential map is
defined on the whole of the tangent space at that point.

The Hadamard theorem tells us that for a manifold with non-positive sectional
curvature the exponential map at any point is a local diffeomorphism and thus a
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covering map. This gives two conclusions. First, if the manifold is simply connected
then the exponential map is a diffeomorphism so the manifold is diffeomorphic to
euclidean space. Second, if the manifold is compact the fundamental group must be
infinite. The proof of Hadamard’s theorem uses Jacobi fields and the assumption
on the sectional curvature rules out any conjugate points.

Myers’s theorem gives a bound on the diameter for a manifold with a positive
lower bound on its Ricci curvature. In particular such a manifold is compact.
Since the same holds for the universal cover, this is also compact and the manifold
must have finite fundamental group. The proof of Myers’s theorem uses the second
variation of the length functional on curves, see (13.9) page 604. One can also use
the energy functional which gives slightly simpler computations, see Section 6.3 of
the lecture notes by Bär, http://geometrie.math.uni-potsdam.de/documents/
baer/skripte/skript-DiffGeoErw.pdf.

http://geometrie.math.uni-potsdam.de/documents/baer/skripte/skript-DiffGeoErw.pdf
http://geometrie.math.uni-potsdam.de/documents/baer/skripte/skript-DiffGeoErw.pdf
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