DIFFERENTIAL GEOMETRY, FALL 2011 GRADUATE LEVEL, ADDITIONAL HOMEWORK 4 SEMI-RIEMANNIAN GEOMETRY

MATTIAS DAHL

Solve and hand in your solution to the following problem on Semi-Riemannian geometry (Chapter 13). Please pay attention to the presentation as well as the arguments you give in your solutions.
Problem 1. (The Schwarzschild metric.) Let $\mathbb{R}^{3} \backslash\{0\}$ have spherical coordinates $0<r<\infty, 0 \leq \theta<\pi, 0 \leq \varphi<2 \pi$, so that the standard flat metric on \mathbb{R}^{3} is $d r^{2}+r^{2}\left(d \theta^{2}+\overline{\sin }^{2} \theta d \varphi^{2}\right)$. Equip $\mathbb{R} \times\left(\mathbb{R}^{3} \backslash\{r \leq 2 m\}\right)$ with the Lorentzian metric

$$
g=-\left(1-\frac{2 m}{r}\right) d t^{2}+\left(1-\frac{2 m}{r}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)
$$

where m is a positive constant. Show that g is a solution to the vacuum Einstein equations

$$
\operatorname{Ric}-\frac{1}{2} S g=0 \quad \Longleftrightarrow \quad \text { Ric }=0
$$

where the scalar curvature $S=\operatorname{tr}_{\mathrm{g}}$ Ric is the trace of the Ricci curvature.

[^0]
[^0]: Date: December 8, 2011

