DIFFERENTIAL GEOMETRY, FALL 2011 HOMEWORK 1

MATTIAS DAHL

Solve and hand in your solutions to the following seven problems (they are all from Chapter 2 in the course book). You are also welcome to solve the quite complicated bonus problem (this will help towards, but is not necessary for, getting a high grade). Please pay attention to the presentation as well as the arguments given in the solutions.

Problem 1. Recall that we have charts on $\mathbb{R} P^{2}$ given by

$$
\begin{aligned}
& {[x, y, z] \mapsto\left(u_{1}, u_{2}\right)=(x / z, y / z) \text { on } U_{3}=\{z \neq 0\}} \\
& {[x, y, z] \mapsto\left(v_{1}, v_{2}\right)=(x / y, z / y) \text { on } U_{2}=\{y \neq 0\}} \\
& {[x, y, z] \mapsto\left(w_{1}, w_{2}\right)=(y / x, z / x) \text { on } U_{1}=\{x \neq 0\}}
\end{aligned}
$$

Show that there is a vector field on $\mathbb{R} P^{2}$ which in the last coordinate chart above has the coordinate expression $w_{1} \frac{\partial}{\partial w_{1}}-w_{2} \frac{\partial}{\partial w_{2}}$. What are the expressions for this vector field in the other two charts?

Problem 2. Show that the subset N of $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ defined by $N=\{(x, y)$: $\|x\|=1, x \cdot y=0\}$ is a smooth manifold diffeomorphic to $T S^{n}$.

Problem 3. Find the integral curves and the flow of the vector field on \mathbb{R}^{2} given by $X(x, y)=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$.

Problem 4. Using the usual spherical coordinates (φ, θ) on S^{2}, compute the bracket $\left[\varphi \frac{\partial}{\partial \theta}, \theta \frac{\partial}{\partial \varphi}\right]$.

Problem 5. Show that if X and Y are vector fields with flows φ_{t}^{X} and φ_{t}^{Y}, then if $[X, Y]=0$, the flow of $X+Y$ is $\varphi_{t}^{X} \circ \varphi_{t}^{Y}$.

Problem 6. Recall that the tangent bundle of the open set $\mathrm{GL}(n, \mathbb{R})$ in $M_{n \times n}(\mathbb{R})$ is identified with $\operatorname{GL}(n, \mathbb{R}) \times M_{n \times n}(\mathbb{R})$. Find the flow of the vector field X on $\mathrm{GL}(n, \mathbb{R})$ given by $g \mapsto\left(g, g^{2}\right)$. Is X a complete vector field?

Problem 7. Show that if $p(x)=p\left(x_{1}, \ldots, x_{n}\right)$ is a homogeneous polynomial, so that for some positive integer m,

$$
p\left(t x_{1}, \ldots, t x_{n}\right)=t^{m} p\left(x_{1}, \ldots, x_{n}\right)
$$

then as long as $c \neq 0$, the set $p^{-1}(c)$ is an $(n-1)$-dimensional submanifold of \mathbb{R}^{n}.

[^0]Bonus Problem. Let

$$
t \mapsto Q_{t}=\left(\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

for $t \in \mathbb{R}$. Let $\varphi(t, P)=Q_{t} P$ where P is a plane in \mathbb{R}^{3} (containing the origin). Show that φ defines a flow on the Grassmann manifold $G(3,2)$. Find the local expression in some coordinate system of the vector field X^{Q} generating this flow. Do the same thing for the flow given by

$$
t \mapsto R_{t}=\left(\begin{array}{ccc}
\cos t & 0 & -\sin t \\
0 & 1 & 0 \\
\sin t & 0 & \cos t
\end{array}\right)
$$

and find the corresponding vector field X^{R}. Compute the bracket $\left[X^{R}, X^{Q}\right]$.

[^0]: Date: September 23, 2011.

