DIFFERENTIAL GEOMETRY, FALL 2011 HOMEWORK 1

MATTIAS DAHL

Solve and hand in your solutions to the following seven problems (they are all from Chapter 2 in the course book). You are also welcome to solve the quite complicated bonus problem (this will help towards, but is not necessary for, getting a high grade). Please pay attention to the presentation as well as the arguments given in the solutions.

Problem 1. Recall that we have charts on $\mathbb{R}P^2$ given by

$$[x, y, z] \mapsto (u_1, u_2) = (x/z, y/z) \text{ on } U_3 = \{z \neq 0\},\$$

$$[x, y, z] \mapsto (v_1, v_2) = (x/y, z/y) \text{ on } U_2 = \{y \neq 0\},\$$

$$[x, y, z] \mapsto (w_1, w_2) = (y/x, z/x) \text{ on } U_1 = \{x \neq 0\}.$$

Show that there is a vector field on $\mathbb{R}P^2$ which in the last coordinate chart above has the coordinate expression $w_1 \frac{\partial}{\partial w_1} - w_2 \frac{\partial}{\partial w_2}$. What are the expressions for this vector field in the other two charts?

Problem 2. Show that the subset N of $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$ defined by $N = \{(x, y) : \|x\| = 1, x \cdot y = 0\}$ is a smooth manifold diffeomorphic to TS^n .

Problem 3. Find the integral curves and the flow of the vector field on \mathbb{R}^2 given by $X(x,y) = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$.

Problem 4. Using the usual spherical coordinates (φ, θ) on S^2 , compute the bracket $[\varphi \frac{\partial}{\partial \theta}, \theta \frac{\partial}{\partial \varphi}]$.

Problem 5. Show that if X and Y are vector fields with flows φ_t^X and φ_t^Y , then if [X, Y] = 0, the flow of X + Y is $\varphi_t^X \circ \varphi_t^Y$.

Problem 6. Recall that the tangent bundle of the open set $\operatorname{GL}(n, \mathbb{R})$ in $M_{n \times n}(\mathbb{R})$ is identified with $\operatorname{GL}(n, \mathbb{R}) \times M_{n \times n}(\mathbb{R})$. Find the flow of the vector field X on $\operatorname{GL}(n, \mathbb{R})$ given by $g \mapsto (g, g^2)$. Is X a complete vector field?

Problem 7. Show that if $p(x) = p(x_1, \ldots, x_n)$ is a homogeneous polynomial, so that for some positive integer m,

$$p(tx_1,\ldots,tx_n)=t^m p(x_1,\ldots,x_n),$$

then as long as $c \neq 0$, the set $p^{-1}(c)$ is an (n-1)-dimensional submanifold of \mathbb{R}^n .

Date: September 23, 2011.

Bonus Problem. Let

$$t \mapsto Q_t = \begin{pmatrix} \cos t & -\sin t & 0\\ \sin t & \cos t & 0\\ 0 & 0 & 1 \end{pmatrix}$$

for $t \in \mathbb{R}$. Let $\varphi(t, P) = Q_t P$ where P is a plane in \mathbb{R}^3 (containing the origin). Show that φ defines a flow on the Grassmann manifold G(3, 2). Find the local expression in some coordinate system of the vector field X^Q generating this flow. Do the same thing for the flow given by

$$t \mapsto R_t = \begin{pmatrix} \cos t & 0 & -\sin t \\ 0 & 1 & 0 \\ \sin t & 0 & \cos t \end{pmatrix}$$

and find the corresponding vector field X^R . Compute the bracket $[X^R, X^Q]$.