DIFFERENTIAL GEOMETRY, FALL 2011 HOMEWORK 2

MATTIAS DAHL

Solve and hand in your solutions to the following four problems (where most are from Chapters 3 and 4 in the course book). You are also welcome to solve the more complicated bonus problem (this will help towards, but is not necessary for, getting a high grade). Please pay attention to the presentation as well as the arguments given in the solutions.

Problem 1. Let the function $s: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R} P^{n}$ be defined by the rule that $s(x)$ is the line through x and the origin. Show that s is a submersion.

Problem 2. Show that the map $f: \mathbb{R} P^{2} \rightarrow \mathbb{R}^{3}$ defined by $f([x, y, z])=\frac{1}{r^{2}}(y z, x z, x y)$, $r^{2}=x^{2}+y^{2}+z^{2}$, is an immersion at all but six points $p \in \mathbb{R} P^{2}$. The image of f is called the Roman surface. Show that the map $g: \mathbb{R} P^{2} \rightarrow \mathbb{R}^{4}$ given by $g([x, y, z])=\frac{1}{r^{2}}\left(y z, x z, x y, x^{2}+2 y^{2}+3 z^{2}\right)$ is a smooth embedding.

Problem 3. Find the Gauss curvature K at a point (x, y, z) on the ellipsoid $x^{2} / a^{2}+$ $y^{2} / b^{2}+z^{2} / c^{2}=1$.
Problem 4. Show that the vector field $X(x, y, z)=y \partial / \partial x-x \partial / \partial y$ is tangential to the unit sphere $S^{2} \subset \mathbb{R}^{3}$. Compute $\nabla_{Y_{p}} X$ for any tangent vector $Y_{p} \in T_{p} S^{2}$, where ∇ denotes the Levi-Civita covariant derivative of S^{2}. Show that X satisfies the identity

$$
g\left(\nabla_{Y_{p}} X, Z_{p}\right)+g\left(Y_{p}, \nabla_{Z_{p}} X\right)=0
$$

for all $Y_{p}, Z_{p} \in T_{p} S^{2}$. (This is the definition of X being a Killing vector field, which means that the diffeomorphisms in the flow generated by X are all isometries of the Riemannian metric on S^{2}.)
Bonus Problem. Enneper's surface. Show that the following defines a minimal but not 1-1 immersion.

$$
x(u, v):=\left(u-\frac{u^{3}}{3}+u v^{2},-v+\frac{v^{3}}{3}-v u^{2}, u^{2}-v^{2}\right) .
$$

[^0]
[^0]: Date: January 2, 2012.

