DIFFERENTIAL GEOMETRY, FALL 2011 HOMEWORK 3

MATTIAS DAHL

Solve and hand in your solutions to the following five problems covering material from Chapters 7-9 in the course book. You are also welcome to solve the more complicated bonus problem (this will help towards, but is not necessary for, getting a high grade). Please pay attention to the presentation as well as the arguments given in the solutions.
Problem 1. (Problem (7), page 343.) Let the diffeomorphism $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $(x, y) \mapsto(x+2 y, y)$. Let $\tau=x \frac{\partial}{\partial x} \otimes d y+\frac{\partial}{\partial y} \otimes d y$. Compute $\varphi_{*} \tau$ and $\varphi^{*} \tau$.
Problem 2. (Problem (12), page 343.) In some chart $(U,(x, y))$ on a 2-manifold, let $A=x \frac{\partial}{\partial y} \otimes d x \otimes d y+\frac{\partial}{\partial x} \otimes d y \otimes d y$ and let $X=\frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$. Compute the coordinate expression for the Lie derivative $\mathcal{L}_{X} A$.

Problem 3. Let $\omega=x^{2} d y \wedge d z+y^{2} d z \wedge d w \in \Omega^{2}\left(\mathbb{R}^{4}\right)$ and let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be defined by $f(a, b, c)=(a, b, c, a b c)$. Compute $f^{*} \omega$.

Problem 4. Let the 2-torus $T^{2}=S^{1} \times S^{1}$ be embedded in \mathbb{R}^{4} as $T^{2}=\{(x, y, z, w) \in$ $\left.\mathbb{R}^{4} \mid x^{2}+w^{2}=y^{2}+z^{2}=1\right\}$. Give T^{2} an orientation and compute $\int_{T^{2}} \omega$ where $\omega=x y z d w \wedge d y \in \Omega^{2}\left(\mathbb{R}^{4}\right)$.
Problem 5. Find a differential form $\eta \in \Omega^{n-1}\left(\mathbb{R}^{n}\right)$ such that $\operatorname{vol}(U)=\int_{\partial U} \eta$ for all bounded domains $U \subset \mathbb{R}^{n}$ with smooth boundary. Find an expression for all such forms η.

Bonus Problem. Let M be a smooth manifold with a Riemannian metric, and let $S M \subset T M$ be the subset of tangent vectors of unit length. Show that $S M$ is an orientable smooth manifold (regardless of whether M is orientable or not).

[^0]
[^0]: Date: November 22, 2011.

