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1 Introduction

1.1 Integration and boundaries

We shall start with some well-known results on integration which we then shall try to interpret
in a way that leads to some of the basic ideas of algebraic topology. The basic result that we are
going to discuss is Stokes formula1 but we shall also spend some time in formulating it in a way
that will suit our purposes.

Remark: Note that, as with all results of analysis, our integration formulas require various
conditions on the functions involved to be true. As that is not our main concern we shall shrug
them all under the mat and assume that our functions fulfil all conditions necessary to have our
formulas make sense (and be true). (Assuming that they are smooth with compact support will
certainly ensure that.)

1.1.1 Curve integrals

We start with a very simple situation namely that of the fundamental theorem of integral calculus:∫ b

a

f ′(t) dt = f(b)− f(a)

Some comments are in order.

• We integrate over the interval [a, b] and the right hand side involves an evalutation at its
boundary points a and b.

• On the right hand side a and b are treated differently, the evaluation at b appearing with
a plus sign, that at a with a minus sign. On the left hand side this is reflected in the fact
that we integrate in a certain direction, from a to b.

The ideas that are relevant to us can be made clearer of we pass to curve integrals (in
the plane say). Hence we start with a curve γ in R2 and we want to integrate along it (the
interval [a, b] ⊂ R ⊂ R2 is one such example in which case we should get the usual integral).
The first question is what form the integrand should have. We can take our cue from the
definition of the ordinary integral in terms of Riemann sums. Hence if we subdivide the interval
a = t0 < t1 < · · · < tn = b and pick points ti−1 ≤ vi ≤ ti then the Riemann sum is

∑n
i=1 f(vi)∆ti

where ∆ti = ti− ti−1. If we try to generalise this to a curve integral we see that by a curve γ we
must mean something with the property that given two distinct points p and q on it we can speak
of p coming before q (written p < q) or vice versa and exactly one of these must be true. Assuming
that we can pick points po < p1 < · · · < pn on γ and points also on the curve pi−1 ≤ vi ≤ pi.
The difference with the previous case is that we have two possible differences that can be used
in a Riemann sum; the difference ∆xi := xi − xi−1 of the x-coordinates of pi and pi−1 and
∆yi := yi−yi−1 using instead the y-coordinates. This suggests that we should use two functions
f and g in the integrand and consider the Riemann sum

∑n
i=1 f(vi)∆xi + g(vi)∆yi. When these

sums converge to a common value it seems reasonable to denote it
∫
γ
f(x, y) dx+ g(x, y) dy.

There is one important special case; when the curve is parametrised, i.e., γ is a map γ : [a, b]→
R2. To begin with this solves the problem on how to order the points, we use the parameter
value. Doing that it is not difficult to show that, with γ(t) = (x(t), y(t)),∫

γ

f(x, y) dx+ g(x, y) dy =

∫ b

a

(f(x(t), y(t))x′(t) + g(x(t), y(t))y′(t)) dt.

1For definition see http://en.wikipedia.org/wiki/Stokes_theorem.

http://en.wikipedia.org/wiki/Stokes_theorem
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At least mnemonically this can be expressed by the formulas dx = x′(t) dt and dy = y′(t) dt. The
answer is that if we define, for a function h defined in a neighbourhood of γ, dh := h′x dx+h′y dy
then ∫

γ

dh = h(γ(b))− h(γ(a))

where we have assumed that the curve is parametrised as above.
Exercise 1: Show this formula using the formula above for the the curve integral along a
parametrised curve.

Note that not every expression f(x, y) dx + g(x, y) dy is of the form dh. In fact if f(x, y) =
h′x(x, y) and g(x, y) = h′y(x, y), then g′x = h′′yx = h′′xy = f ′y which is not always true. We shall
come back to this question.

To prepare for going further we now introduce some notation. First we shall introduce formal
linear combinations, with real coefficients, of points in the plane;

∑
i ci[zi] where ci ∈ R and

zi ∈ R2. By “formal” we mean that addition and scalar multiplication is in now way related to
the vector space structure of R2 (and we use [z] instead of z to emphasise this) and that we
have no linear relation between these elements (i.e., the set {[z] | z ∈ R2 } form a basis). For
reasons that will become clearer later we shall call such linear combinations 0-cycles (in R2 this
clearly makes sense for any set and we shall soon consider a subset of R2 and consider 0-cycles in
that set). If f : R2 → R then we extend it “by linearity” to 0-cycles; f(

∑
i ci[zi]) :=

∑
i cif(zi).

Hence we can express our integration formula as
∫
γ
dh = h([b]− [a]). Furthermore, a and b are

the boundary points of γ and we formalise this by putting ∂γ = [b]− [a]. Note tha asymmetric
treatment of a and b; γ comes with a direction (or as we shall say orientation) and this allows
us to define an oriented boundary of it where we assign different signs to the beginning and end
point. We can then once again rewrite our formula as

∫
γ
dh = h(∂γ). Going one step further

(which would in fact seem to be going too far) we can write evaluation on a 0-cycle z =
∑
i ci[zi]

as an integral,
∫
z
f = f(z) =

∑
i cif(zi), and then the formula becomes

∫
γ
dh)

∫
∂γ
h. This will

turn out not to be as silly as it seems.

1.1.2 Curve and surface integrals

We shall now introduce one further step involving 2-dimensional integration. It will turn out
to be very convenient to go one step further in our integral notation. We shall thus introduce
1-chains which are formal linear combinations of curves, γ =

∑
i ci[γi] (as it is less likely to

introduce confusion we shall often here dispense with the brackets) and extend integration again
by linearity; ∫

γ

f(x, y) dx+ g(x, y) dy :=
∑
i

ci

∫
γi

f(x, y) dx+ g(x, y) dy

We shall now use integration over a domain in R2, where by a domain D we mean a compact
subset which is the closure of its interior and whose boundary consists of (nice enough to allow for
curve integration) some curves. It is usually not made clear as long as one talks of integration in
euclidean space but just as integration along curves requires that they be oriented the same is true
for integration over a domain. (This can be ignored in the case of domains as euclidean space has
a canonical orientation.) In the plane this amounts to specifying what is left and right or rather
what is counte clockwise rotation. If we orient the boundary curves of D then such an orientation
may be compatible with the orientation of the domain which means that going forward along
the curve is the same as moving counter clockwise. For the domain D we then define its signed
boundary, as a 1-cycle ∂D =

∑
i±[γi], where γi runs over the boundary curves and we choose

the +-sign of the orientations are compatible and the −-sign if they are not. This is illustrated
by Fig. 1 where the outer boundary γ1 has a compatible orientation and the inner boundary
γ2 does not so that ∂D = γ1 − γ2. Note that the things we integrate over D are expressions
of the form f(x, y) dxdy and one may ask if there is some special form for such an expression
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Figure 1: Oriented domain.

which will allows us to express this integration as an integral along the (oriented) boundary. By
analogy with the curve integral case we should start with an expression ω = f(x, y) dx+g(x, y) dy
and somehow construct an expression dω and then hope that

∫
D
dω =

∫
∂D

ω. Such a d can be
constructed with the following properties.

• d is linear so that dω = d(f dx) + d(g dy).

• We have that d(fdx) = df ∧ dx (and d(gdy) = dg ∧ dy).

• As before df = f ′xdx+ f ′ydy and dg = g′xdx+ g′ydy.

• The product ∧ is distributive so that df ∧ dx = f ′xdx ∧ dx + f ′ydy ∧ dx and dg ∧ dy =
g′xdx ∧ dy + g′ydy ∧ dy.

• It is also anti-commutative so that dy∧dx = −dx∧dy and dx∧dx = −dx∧dx which gives
dx ∧ dx = 0.

• Together this gives dω = (g′x − f ′y)dx ∧ dy.

• For the purposes of integration dx∧dy is the same as dxdy so that
∫
D
dω =

∫
D

(g′x−f ′y)dxdy.
Note that this means that dy ∧ dx is not the same as dydx. In fact according to the
conventions of integration dydx is the same as dxdy and by our previous rules dy ∧ dx =
−dx ∧ dy which then corresponds to −dxdy.

• It is now a fact that ∫
D

dω =

∫
∂D

ω.

Remark: i) It may seem strange that
∫
D
h(x, y) dx∧dy =

∫
D
h(x, y) dxdy whereas

∫
D
h(x, y) dy∧

dx = −
∫
D
h(x, y) dxdy. However this has to do with the fact that the coordinates (x, y) is posi-

tively oriented, rotating the positive x-axis into the positive y-axis is moving counter-clockwise
while (y, x) is negatively oriented, we move instead clockwise. Hence the ∧-product keeps track
of orientations.

ii) We seem to have the same notation for two different things, we use the symbols dx and
dy but we have also defined dh for a function h. However, x and y are (linear) functions on
R2, x(s, t) = s and y(s, t) = t and using our definition we should have dx = x′x dx + x′y dy =
1 · dx+ 0 · dy = dx so the two notations are consistent.

The whole pattern now persists in higher dimensions. A k-form in Rn is an expression of the
form

ω =
∑

1≤i1<i2<···<ik≤n

fi1,i2,··· ,ikdxi1 ∧ dxi2 ∧ · · · ∧ dxik , R
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where the fi1,i2,··· ,ik are functions on Rn. We then define dω as

dω =
∑

1≤i1<i2<···<ik≤n

dfi1,i2,··· ,ik ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

where we then use (obvious) generalisations of the rules above to get a k+ 1-form. A k+ 1-form
can then be defined over a k+ 1-dimensional oriented compact subset with nice boundary2 D of
Rn and we have the formula

∫
D
dω =

∫
∂D

ω.
We can furthermore replace Rn with any open subset of Rn.

Example: Let us consider the following question: Is the unit circle, S1, the boundary of a
domain (or more generally 2-chain) in R2 \ {0}? Of course it is the boundary of the unit disc in
R2 but the unit disc contains the origin so it does not give an answer to our question. Assume
now that [S1] = ∂D for a 2-chain D. We shall get a contradiction by integrating the 1-form dz/z.
This requires some explanation. We identify R2 with the complex numbers C. We also consider
complex-valued functions and forms we cause no problem (this means that the fi1,i2,··· ,ik are
complex-valued). We use z to denote the complex valued function on R2 = C which is just the
identity function. In real coordinates we have z = x+ iy and thus dz = dx+ idy. On the other
hand z as a function on C \ {0} is invertible, i.e., 1/z makes sense. We can then express this in
the form used above to define the notion of 1:

dz

z
=
x− iy
|z|2

(dx+ idy) =
x− iy
|z|2

dx+
y + ix

|z|2
dy

However it is better to the original form. We begin by computing
∫
S1

dz
z (with S1 oriented

counter-clockwise). We do this by using the parametrisetion t 7→ eit = cos t + i sin t3 where
t ∈ [0, 2π]. This, together with the fact that the derivative of eit equals ieit gives∫

S1

dz

z
=

∫ 2π

0

ieit

eit
dt = 2πi.

The import thing is that this is non-zero because on the other hand∫
S1

dz

z
=

∫
D

d

(
dz

z

)
and it is easy to see that d(1/z) = −1/z2dz and thus

d

(
dz

z

)
=
−1

z2
dz ∧ dz = 0.

Exercise 2: i) Verify that d(1/z) = −1/z2dz.
ii) Show that if ω is a 1-form (in any dimension), then ω ∧ ω = 0.

The conclusion then is that
∫
D
d
(
dz
z

)
= 0 and thus we get the contradiction 2πi = 0.

1.1.3 Cycles and boundaries

In order to understand this let us introduce some notation. A k-form ω is exact if dω = 0 and
it is closed if there is a k − 1-form η such that ω = dη. On the other hand a k-chain D is called
a cycle if ∂D = 0 and it is a boundary if there is a k + 1-chain S such that ∂S = D. It is now a
fact that d2ω = 0 for all forms ω.
Exercise 3: Prove that d2ω = 0 for any form ω.

2What all this means is of course something we haven’t defined properly.
3For definition see http://en.wikipedia.org/wiki/Euler’s_formula.

http://en.wikipedia.org/wiki/Euler's_formula
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On the other hand it seems clear that a boundary should itself have an empty boundary, i.e.,
∂2D = 0 for all chains D. As we are working with signed boundaries it may ve less clear that
the signs actually are the right ones to make this true but the following example should make
this plausible.
Example: Consider a triangle T (cf., Fig. 2) where we have (as is natural) divided its boundary
into three edges (a, b and c) and three vertices (x, y and z). With counter-clockwise orientation

b

a

c

x

z

y

Figure 2: Simplex with edges and vertices.

and orientation of the edges as is indicated in the picture we have ∂T = a − b + c. Again
with the indicated orientations we have ∂a = y − x, ∂b = z − x and ∂c = z − y. Hence
∂2T = (y − x)− (z − x) + (z − y) = 0 so the signs do indeed cancel.

As a consequence we get that all exact forms are closed and all boundaries are cycles. It is
then natural to ask the following two questions:

• Is every closed form exact and if not what is more precisely the difference?

• Is every cycle a boundary and if not what is more precisely the difference?

In the two cases the closed forms (cycles) form a sub-vector space of all forms (chains) and
the exact forms (boundaries) is a subspace. Hence one way of measuring the difference is to
take the quotient of these two vector spaces (and hence that quotient is zero precisely when the
answer to the question is affirmative). This leads to the definition of the de Rham cohomology
groups,4 Hk

dR(X/R), defined as

Hk
dR(X/R) :=

{ω k-form | dω = 0 }
{dη | η k − 1-form }

,

where so far we assume that X is an open subset of some Rn and the homology groups, Hk(X,R),
defined as

Hk(X,R) :=
k-cycles

k-boundaries
.

Stokes formula then gives a relation between these two vector spaces. Namely every k-form ω
gives rise to a linear map on k-chains given by D 7→

∫
D
ω.

Remark: So far we have been very cavalier about what we would accept as chains. As we see
here one must be careful as in general integration even along a curve is not always defined, the
curve may be non-rectifiable5. However, for purposes outside of integration even non-rectifiable
curves may be used. We shall continue for a while to sweep these problems under the rug (the end
result, the homology groups, turn out to be the same for many different choices of specification).

If ω is closed then Stokes formula says that this map vanishes on boundaries;
∫
∂S
ω =

∫
S
dω =

0. Hence a closed form gives rise to a linear map on Hk(X,R). On the other hand if ω is exact
4Georges de Rham, 1903–1990
5For definition see http://en.wikipedia.org/wiki/Rectifiable_curve.

http://en.wikipedia.org/wiki/Rectifiable_curve
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then it gives rise to the zero linear map on cycles;
∫
D
dη =

∫
∂D

η = 0. This means that we get a
linear map

Hk
dR(X/R)→ HomR(Hk(X,R),R).

The so called de Rham’s theorem says that this is an isomorphism.
Example: Let ω be a 1-form on the open connected subset X ⊆ Rn and assume that integration
of ω vanishes on all 1-cycles. We now try to find a function h on X such that ω = dh. The idea
is that h should be a kind of primitive function of ω and we usually construct primitive functions
by integration. We thus fix a point x0 ∈ X and try to define h by h(x) :=

∫
γ
ω where γ is a

curve in X starting at x0 and ending at x. Such a curve exists as X is connected (and open).
There is of course an immediate problem in that this may not be well-defined, it may depend on
the curve. However if γ′ is another such curve we have∫

γ

ω −
∫
γ′
ω =

∫
γ−γ′

ω = 0,

the last equality as γ − γ′ is a cycle; ∂(γ − γ′) = ∂γ − ∂γ′ = [x] − [x0] − ([x] − [x0]) = 0 and
ω is assumed to vanish on cycles. Hence h is a well-defined function and what remains to be
shown is that if ω =

∑
i fidxi, then h

′
xi = fi. To compute that the i’th partial derivative of h

we should consider (h(y) − h(x))/ε, where y = x + (0, . . . ,
i
ε, . . . , 0). We can compute h(y) by

letting γ′ be the curve that starts with the fixed curve γ from x0 to x and then continues to y
with the straight line ` from x to y. However, that means that h(y) is equal to h(x) plus the

integral
∫
`
ω. We can parametrise ` by t 7→ x + (0, . . . ,

i
t, . . . , 0) where t runs from 0 to ε. This

gives that `′(t) = (0, . . . ,
i
1, . . . , 0) and hence that

h(y)− h(x)

ε
=

1

ε

∫
`

ω =
1

ε

∫ ε

0

fi(x+ (0, . . . ,
i
t, . . . , 0)) dt

and when ε→ 0 the last expression converges to fi(x).

Exercise 4: Extend this argument to the case when X is not assumed to be connected.
Hint: X is the disjoint union of its connected components which all are open.

Furthermore, in nice cases Hk(X,R) is actually finite dimensional. Then, by de Rham’s the-
orem so is Hk

dR(X/R). Another consequence is that the map Hk(X,R)→ HomR(Hk(X,R),R)
also given by integration, D 7→ (ω 7→

∫
D
ω), is again an isomorphism so that knowledge of

Hk(X,R) is completely equivalent to knowledge of Hk(X,R). One also gets an invariant of X,
k’th Betti number, bk := dimRHk(X,R).
Exercise 5: Recall that the Cantor set6 C is the closed set {

∑
n≥1 an/3

n | an = 0, 2 } and put
X := R2 \ C. Show that H1(X,R) and H1

dR(X/R) are infinite dimensional.
Hint: Consider the cycles given by circles with center in C and radii such that they are disjoint
from C and the forms dz/(z − a) where a ∈ C and pair them against each other.

1.2 Pseudomanifolds
Forms are very much tied to the real numbers; only forms with real (or complex) coefficients
make sense in general. However when it comes to chains there is no reason to restrict oneself to
real linear combinations. In fact there are other interesting choices. The choice that gives most
information is to use integer coefficients but another interesting choice is to use Z/2-coefficients.
The reason why this is particularly interesting is that if S is a set and

∑
i ai[si] is a (finite)

6For definition see http://en.wikipedia.org/wiki/Cantor_set.

http://en.wikipedia.org/wiki/Cantor_set


7

formal linear combination of elements of S with coefficients in Z/2, then such a sum is completely
specified by the set of si for which ai = 1 and any finite subset of S appears in this way. Thus
we get something more set-theoretic and the boundary ∂D of a chain D should really be just the
set-theoretic boundary. In particular we should have no need for orientations.

We shall now go through an example where this will be made more explicit. We start by
making specific what we in that example mean by chain. For this we start by defining the
standard n-simplex as ∆n := {(x0, x1, . . . , xn) ∈ Rn+1 | xi ≥ 0,

∑
i xi = 1 }.

We may project onto the n last coordinates. As x0 = 1−
∑n
i=1 xi we get that this projection

is injective and the image is {(xi) ∈ Rn | xi ≥ 0,
∑
i xi ≤ 1 }. This allows us us to get a clear

picture of what ∆n looks like.
Example: i) ∆−1 is the empty set.

ii) ∆0 is just the point 0.
iii) ∆1 is the interval [0, 1].
iv) ∆2 is the triangle {(x, y) | x, y ≥ 0, x+ y ≤ 1 }.
v) ∆3 is a tetrahedron {(x, y, z) | z, y, z ≥ 0, x+ y + z ≤ 1 }.
The reason why we don’t define the simplex in this way is that we lose some symmetry by

giving x0 a special rôle. In particular if S ⊆ {0, 1, . . . , n} is a subset then we define the face,
∆n
S , of ∆n associated to S to be the subset defined by xi = 0 when i ∈ S. By projecting

onto the coordinates whose indices are not in S we get a homeomorphism between the face and
the standard n − |S|-simplex (including ∅ = ∆−1 when S = {0, 1, . . . , n}). In particular when
S = {i} we get the i’th facet of ∆n, also denoted ∆n

i . We now choose our orientations so that the
boundary if ∆n is ∂[∆n] =

∑n
i=0(−1)n[∆n

i ]. Note that we have identified ∆n
i with the standard

n− 1-simplex so that ∂[∆n
i ] is also defined (and becomes a sum of faces of ∆n).

Remark: This is the orientation we have used in Fig. 2.

Exercise 6: Show that ∂2[∆n] = 0.

We can use these simplices to define what we mean by a triangulation.

Definition 1.1 Let X be Hausdorff topological space. A triangulation of X consists of a col-
lection of continuous maps {fα : ∆nα → X} fulfilling the following conditions.

• Each fα is injective.

• Each point of X lies in the image of some fα and two fα do not have the same image.

• For an α and a subset S ⊆ {0, 1, 2, . . . , nα} the composite of the identification ∆nα−|S| →
∆nα
S and the restriction fα|∆nα

S
: X → is of the form fβ for some β. It is necessarily unique

by the previous condition and we shall use the notation (α, S) for that β.

• For each choice of distinct indices α and β there are subsets S ⊆ {0, 1, 2, . . . , nα} and
T ⊆ {0, 1, 2, . . . , n} such that (α, S) = (β, T ) and f(α,S) = f(β,T ).

• A subset Z of X is closed precisely when f−1
α (Z) is closed in ∆nα .

Remark: i) Set-theoretically X is determined by the relations f(α,S) = f(β,T ) as the disjoint
union over the index set of the fα with identifications given by the relation (α, S) = (β, T ). The
last condition tells us that the topology of X is also determined by that relation (X has the
quotient topology7 of the disjoint union of the simplices).

ii) Note that each simplex comes with an identification with the standard simplex. In partic-
ular its set of vertices comes with an identification with {0, . . . , n}. For homological purposes we
only need to know the induced total order on the vertices. For that in turn it is enough for each
edge (i.e., 1-simplex) to tell which of its vertices is larger than the other. We shall do that by
drawing an arrow on each edge pointing from the smallest element to the largest (the condition
that we get a total order on each simplex is that there is no oriented cycle).

7For definition see http://en.wikipedia.org/wiki/Quotient_topology.

http://en.wikipedia.org/wiki/Quotient_topology
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Example: i) The circle may be triangulated in many different ways. Fig. 3 shows three such
ways with two, three and four vertices. Note that the one with three vertices is homeomorphic
to the triangulation of the boundary of the standard 2-simplex given by the faces (except for the
simplex itself) of that simplex.

Figure 3: Triangulations of a circle.

ii) It is important that the intersection of simplices is a face of both simplices. Hence, the
left hand figure of Fig. 4 is a triangulation while the right hand is not.

Figure 4: One triangulation and one non-triangulation.

Remark: As was mentioned before, if one consider triangulations up to homeomorphisms they
are an essentially combinatorial concept. One common way of encoding such combinatorial
information is through the notion of (abstract) simplicial complex. This concists of a set S and
a collection P of finite subsets of S such that if T ∈ P, then any subset of T is also in P.
The elements of P then corresponds to the simplices of the triangulation. This however gives a
restriction; a simplex must be determined by the set of its vertices. This is not true for the first of
the triangulations of Fig. 3 as there are two 1-simplices with the same vertices. It is easy enough
to change the definition of simplicial complex so that it encompasses such examples (essentially
one has to specify (α, S) rather than having it defined uniquely) but it becomes technically more
complicated. Hence, particularly in combinatorics, simplicial complexes is often the preferred
notion.

If X now has been provided with a triangulation {fα} we can give a precise definition of
a chain. Hence if R is a commutative ring a k-chain of X with coefficients in R is a formal
finite linear combination

∑
nα=k cα[α] with cα ∈ R (i.e., an element of the free R-module8 on

the set {α | nα = k }). The R-module of k-chains we denote Ck(X,R) (we suppress here the
triangulation even though the same space may have different triangulations).The boundary map
∂k : Ck(X,R)→ Ck−1(X,R) is then extend by linearity from the boundary of simplices that we
already defined for a standard simplex: ∂k[α] =

∑nα
i=0(−1)i[(α, {i})].

Exercise 7: Show that ∂2 = 0.

8For definition see http://en.wikipedia.org/wiki/Free_module.

http://en.wikipedia.org/wiki/Free_module
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Example: Let us consider the example of the left hand side triangulation of the circle of Fig. 3.
We have two 1-simpleces a and b and two vertices x and y. With suitable choice of orientations
we have ∂[a] = [x]− [y] and ∂[b] = [y]− [x] and hence [a] + [b] is a basis for 1-cycles and as there
are no 2-chains we get that H1(S1, R) is the free R-module R([a] + [b]). On the other hand all
0-chains are cycles and the 0-cycles are of the form R([y]− [x]). This gives that H0(S1, R) is the
free R-module R[x].

There is one ambiguity in this example. Formally the empty simplex is part of a triangulation
(needed to account for the possibility that the intersection of two non-empty simplices could be
empty). Hence we would also have −1-chains, all R-multiples of the single empty simplex and
∂0 : C0(X,R) → C−1(X,R) which has ∂0[x] = [∅] for all vertices x. Whether one wants to
admit −1-chains or not depend on circumstances. However, as one may in fact be interested
simultaneously in both cases one speaks of reduced homology when one does and uses the notation
H̃k(X,R). Of course ordinary homology and reduced homology will only differ in degree 0,
H0(X,R) = H̃0(X,R)

⊕
R (except in the very special case when X = ∅ and H̃−1(X,R) = R

and all other homology modules are zero).
We are now able to arrive at a definition used in the title of this subsection.

Definition 1.2 A closed pseudomanifold of dimension n is a topological space X together with
a finite triangulation fulfilling the following conditions:

• There are no simplices of dimension larger than n and every simplex lies in an n-dimensional
simplex.

• Every n− 1-dimensional simplex lies in exactly 2 n-simplices
Example: i) The circle with any of the triangulations of Fig. 3 is a pseudomanifold (the notion
is actually independent of the triangulation).

The union of the boundary of two 3-simplices at one of their vertices is a pseudomanifold (see
Fig. 5). It is not however a manifold, where a topological space is a manifold if each point has

Figure 5: Non-manifold pseudomanifold.

a neighbourhood homeomorphic to an open subset of some Rn. In fact the joined vertex has no
such neighbourhood.

If we instead do the same construction for two 2-simplices, then the joined vertex lies on four
1-simplices and it is not a pseudomanfold.

ii) “Closed” comes from the condition that we have only finitely many simplices. For instance
R is a (pseudo-)manifold with respect to the triangulation for which each interval [n, n + 1],
n ∈ Z is a 1-simplex.

The reason for discussing pseudomanifolds here is that they have a very distinguished n-cycle.

Proposition 1.3 LetX be a pseudomanifold of dimension n. Then the sum of all the n-simplices
is a Z/2-cycle.
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Proof. If we look at the sum c =
∑
nα=n[α] we want to compute ∂c =

∑
nα=n ∂[α]. This of

course is a sum (modulo 2) of n − 1-simplices and the number of times a given n − 1-simplex
appears is equal to the times that it appears in some n-simplex (as it appears once or zero
times in ∂[α] depending on whether it is contained in the simplex of α or not). However, by the
definition of pseudomanifold any n − 1-simplex appears in exactly two n-simplices which is an
even number.

The cycle of this proposition is called the fundamental cycle of the pseudomanifold. Most of
the time it is the only non-zero cycle as the following exercise shows.
Exercise 8: Show that if the n-dimensional closed pseudomanifoldX is connected thenHn(X,Z/2) =
Z/2σ, where σ is the fundamental cycle.

It is natural to ask if there is a fundamental cycle in chains with other coefficients. It turns
out that the integral case is the crucial one and this is the reason for the following definition.

Definition 1.4 Let X be a pseudomanifold of dimension n. An orientation or integral funda-
mental cycle of X is an n-cycle

∑
nα=n cα[α] with integer coefficients, where cα ∈ {±1}. We say

that X is orientable if it admits an orientation.

Example: i) The oriented boundary σ = ∂[∆n] =
∑

0≤i≤n(−1)i[∆n
i ] is an n − 1-chain of the

boundary ∂∆n of ∆n and each of its n− 1-simplices appears with coefficient ±1. We have seen
that ∂∂[∆n] = 0 so that σ is an orientation of ∂∆n.

ii) All three triangulations of the circle of Fig. 3 are orientable (as is easily seen).

Exercise 9: Show that if X is a closed connected n-pseudomanifold and c =
∑
nα=n cα[α] is an

integral n-cycle, then |cα| is a constant n. Show in particular that 1/n · c is a fundamental cycle
and that there are zero or two fundamental cycles on X.
Hint: Show that |cα| is constant for the n-simplices in a connected component of X.

1.3 The projective plane
So far we haven’t seen any examples of a non-orientable pseudomanifold. This is what we shall
do in the current subsection where we shall introduce and study the projective plane. The
projective plane P2 is obtained from the 2-sphere by identifying antipodal points (see left part
of Fig. 6). Note that the lower hemisphere meets all equivalence classes of this relation and it is
only the points of the circle in the (x, y)-plane which meet more than one point. Hence we get the
projective plane also by taking the lower hemisphere and identifying antipodal points of its points
in the (x, y)-plane (see right part of Fig. 6). We can then project the lower hemisphere along
the z-axis to get the unit disc and thus the projective plane is also the unit disc with antipodal
points of the unit circle identified (see Fig. 7). From this a triangulation can be produced by
thinking of this as a square still with antipodal points identified and then divide the square into
four triangles. This gives us four triangles G, H, I and J , 6 edges a, b, c, d, e and f and 3
vertices 0, 1 and 2. With the orderings given we have ∂[G] = [f ]− [a] + [e], ∂[H] = [f ]− [b] + [c],
∂[I] = [d] − [a] + [c], ∂[J ] = [d] − [b] + [e], ∂[a] = [2] − [0], ∂[b] = [2] − [0], ∂[c] = [2] − [1],
∂[d] = [1]− [0], ∂[e] = [2]− [1] and ∂[f ] = [1]− [0]. We can now use this to compute the integral
homology of P2. It is clear that modulo 0-boundaries all points are equivalent and this gives
H0(P2,Z) = Z.
Exercise 10: show that for a triangulated X, the class of a point has infinite order in H0(X,Z).

Turning to degree 1, it is clear that c1 := [b] − [a], c2 := [f ] − [d], c3 := [e] − [c] and
c4 := [e] + [f ] − [b] are cycles and it is easy to see that they form a basis for the 1-cycles. We
furthermore have ∂[G] = c1 + c4, ∂[H] = −c3 + c4, ∂[I] = c1 − c2 − c3 + c4 and ∂[J ] = −c2 + c4.
Modulo 1-boundaries we thus have c2 ≡ c3 ≡ c4, c1 ≡ −c4 and then finally −2c4 ≡ 0. This gives
us that H1(P2,Z) = Z/2. Finally, it is easy to see directly that H2(P2,Z) = 0 but we can also
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Figure 6: Identifying antipodal points.

Figure 7: Identifying antipodal points on unit circle.

argue as follows: If we use Q-coefficients we still have H1(P2,Q) = 0 and we get H1(P2,Q) = 0.
This means that ∂2 : C2(P2,Q)→ C1(P2,Q) has a cokernel of dimension 2 and as these vector
spaces have rank 4 and 6 respectively we get that ∂2 is injective.
Exercise 11: Verify the details in this argument.

Exercise 12: Show that H2(P2,Z/2) = H1(P2,Z/2) = H0(P2,Z/2) = Z/2.

1.4 Syzygies

Historically, there is a completely different development which eventually was realised to have
to have close connections with homology. This was originally related to the manipulation of
polynomials. Hence, for reasons that we won’t go into here one was interested in ideals I in
polynomial ring R := k[x0, . . . , xn]9 over a field k (which at the beginning was assumed to be
the complex or possibly the real numbers). Recall that a non-zero10 polynomial p ∈ k[x0, . . . , xn]

9We start indexing at 0 instead of 1 as it is n that is the appropriate parameter when, as we shall, one is
dealing with homogeneous polynomials

10The zero polynomial creates something of a problem, sometimes it is better to assume it has no degree,
sometimes that it has all possible degrees, we shall often ignore this problem.
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Figure 8: Triangulation of projective plane.

is said to be homogeneous of degree k if p(x0, . . . , xn) =
∑
|α|=k cαx

α, where we use multi-index
notation; α = (α0, . . . , αn) ∈ Nn+1, |α| = α0 + · · · + αn and xα = xα0

0 · · ·xαnn . We then use
the notation deg p = k (and by using deg p we also claim that p is homogeneous). Now, any
polynomial p may uniquely be written as a (finite) sum of homogeneous polynomials p =

∑
k pk,

where deg pk = k and we shall use this notation, pk, to denote the component of p of degree k.
We then say that the ideal I is homogeneous if p ∈ I =⇒ ∀k : pk ∈ I. Another, more abstract
but useful, way of expressing this is to define Ik := {p ∈ I | p = 0 ∨ deg p = k } and then I is
the direct sum11 I =

⊕
k Ik. For this reason one also often says that I is a graded ideal. This

means that R/I is, just like the polynomial ring itself, is a graded ring12, i.e., R/I =
⊕

k(R/I)k
and (R/I)k · (R/I)` ⊆ (R/I)k+`. Now it turns out that I is finitely generated13 We may assume
that those generators are homogeneous, I = (f1, . . . , fr), with deg fi = ni and we may assume
that r is minimal. It then turns out that the degrees ni do not depend on the chosen generators
(the generators themselves may, if deg f = deg g we may replace them with any basis for the
linear space spanned by them also if deg f < deg g, then g can be replaced by g + rf where
deg r = deg g− deg f). It was soon realised that in order to understand a graded ideal (with say
a chosen minial set of homogeneous generators) it is very useful to know about relations between
the generators. Hence a syzygy14 for (f1, . . . , fr) is a collection of polymonials (h1, . . . , hr) with
deg hi + deg fi independent of i such that

∑
i hifi = 0. In modern terms the syzygies form the

graded components of an R-submodule of Rr. More precisely we should keep track of degrees.
Hence for integer e we define R(e) to be the graded R-module15 with R(e)k, its degree k-part,
being equal to Rk−e (so that the module generator 1 lies in degree e). If (f1, . . . , fr) is a
minimal set of homogeneous generators of the ideal I with ei := deg fi, then we define a map⊕

iR(ei) → R which maps (h1, . . . , hr) to
∑
i hifi. It is a homogeneous R-module map (i.e., it

preserves degrees) and its image is exactly I. Its kernel K is a graded submodul of
⊕

iR(ei)
whose homogeneous elements are exactly the syzygies.

This process can be iterated. Again we have that K is finitely generated and we can find a
minimal set of homogeneous elements (which now are r-vectors of polynomials instead of just
polynomialis) and then do the same construction again. This leads to the following situation.
We get an exact sequence16 of R-modules

· · · →
⊕
i

R(e`i)→
⊕
i

R(e`−1
i )→ · · · →

⊕
i

R(e2
i )→

⊕
i

R(e1
i )→

⊕
i

R(e0
i )→ R/I → 0,

called a resolution of R/I, where the eki are the degrees of a minimal set of homogeneous gener-
ators for the kernel of

⊕
iR(ek−1

i )→
⊕

iR(ek−2
i ). The famous syzygy theorem17 of Hilbert says

11For definition see http://en.wikipedia.org/wiki/Direct_sum.
12For definition see http://en.wikipedia.org/wiki/Graded_ring.
13Historically this came later and people spent a lot of time proving that specific ideals were finitely generated.
14Syzygy is a Greek word meaning pair or conjunction. It is used in a surprisingly large number of contexts.

The first mathematical use of it recorded by the Oxford English Dictionary is in an article by Sylvester from 1850.
15For definition see http://en.wikipedia.org/wiki/Graded_module.
16For definition see http://en.wikipedia.org/wiki/Exact_sequence.
17For definition see http://en.wikipedia.org/wiki/Syzygy_theorem.

http://en.wikipedia.org/wiki/Direct_sum
http://en.wikipedia.org/wiki/Graded_ring
http://en.wikipedia.org/wiki/Graded_module
http://en.wikipedia.org/wiki/Exact_sequence
http://en.wikipedia.org/wiki/Syzygy_theorem
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that the set {e`i}i is empty when ` > n+ 1.
Example: i) When n = 0 we know that k[x0] is a principal ideal domain18 and hence I (if
non-zero) is generated by a single element f1. The map R(e1

1) → R which maps h to hf1 is
injective and its kernel is thus 0.

ii) Suppose that I = (f1, f2). As R is a unique factorisation domain19 we can write fi = gig,
where g1 and g2 are without a common factor. Then (g2,−g1) is a syzygy and conversely if
(h2,−h1) is a syzygy, then h2g1g = h1g2g which gives (as R is a domain) h2g1 = h1g2 and as g1

and g2 have no factor in common we get gi|hi so that we can write hi = kigi but h2g1 = h1g2

then gives k1 = k2 = k, i.e., (h2,−h1) = k(g2,−g1). This means that the first syzygy module is
free with basis (g2,−g1) and the process stops. This shows that when n > 1 the process does
not have to go all the way, Hilbert’s result only says that the process must stop before n steps.

iii) Consider the ideal I = (x0, . . . , xn). For 0 ≤ i < j ≤ n we have a syzygy (0, . . . ,
i
xj , . . . ,

j
−xj , . . . 0)

and it is not difficult to see that they form a basis for the syzygies. However, as soon as n > 1
there are second syzygies. To get the general pattern rather than describing directly the syzygies
we instead describe the resolution. Hence, for 0 ≤ k ≤ n we let Sk be the free graded R-module
with basis {ei1,...,ik}, where 0 ≤ i1 < i2 < · · · < ik ≤ n, all of degree k. We define an R-map
dk : Sk → Sk−1 specified by dk(ei1,...,ik) =

∑
1≤r≤k(−1)r+1xir (i1, . . . , îr, . . . , ik) (where as usual

the hat means that that index is removed).
Exercise 13: Show that this is a minimal resolution of R/(x0, . . . , xn).

Hence we get that Hilbert’s theorem is sharp if we consider all graded modules.
There is a very nice application of Hilbert’s syzygy theorem to the computation that today is

known as the Hilbert function. It was realised early that the function k 7→ HI(k) := dim(R/I)k
is an important invariant of the ideal I. Of course there is only a finite number of homogeneous
monomials of degree k and hence Rk and thus (R/I)k is finite dimensional.
Exercise 14: Show that dimRk =

(
n+k
n

)
.

We now apply Hilbert’s syzygy theorem to get a minimal resolution

0→ Sn+1 → Sn → · · · → S1 → S0 → R/I → 0,

where Si =
⊕

j R(eij). If we look at a specific degree this gives an exact sequence of finite
dimensional vector spaces

0→ (Sn+1)k → (Sn)k → · · · → (S1)k → (S0)k → (R/I)k → 0

and as a consequence we get HI(k) =
∑
i(−1)i dim(Si)k. Now, dimR(e)k = dimRk−e =

(
n+k−e
n

)
and hence

HI(k) =
∑
i,j

(−1)i
(
n+ k − eij

n

)
.

This has an interesting qualitative consequence.For ` ≥ 0 we have thatm 7→
(
m
`

)
is the polynomial

function m 7→ m(m−1) · · · (m− `+ 1)/`!. Note that while this polynomial makes sense for all m
it does not equal

(
m
`

)
for general m < 0 (to fit in with the above exercise we should have

(
m
`

)
= 0

when m < `). So our general conclusion is that MI(k) is a polynomial function for k >> 0.
The fact that the Hilbert function is a polynomial for large k can be proved in different ways

(arguably simpler). However, this view point has turned out to be extremely important for the
more detailed study of the Hilbert function.

It may seem that Hilbert’s syzygy theorem is conceptually different from homology in that it
deals with exact sequences while one of the major point of homology is that it often is non-trivial
which means exactly that the sequence of chains and boundary maps is not exact. However

18For definition see http://en.wikipedia.org/wiki/Principal_ideal_domain.
19For definition see http://en.wikipedia.org/wiki/Unique_factorization_domain.

http://en.wikipedia.org/wiki/Principal_ideal_domain
http://en.wikipedia.org/wiki/Unique_factorization_domain
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when people tried to understand why the eij are independent of the chosen bases (and also to
generalise it to situations where minimal resolutions may not exist such as for non-graded ideals)
it was realised that one should look at the sequence (for the tensor product see 20)

0→ Sn+1

⊗
R

k→ Sn
⊗
R

k→ · · · → S1

⊗
R

k→ S0

⊗
R

k→ 0,

where k is considered as an R-module by regarding it as the quotient R/(x0, . . . , xn) which is no
longer exact and then consider its homology. The independence of the eij then follows from an
independence result of this homology of the chosen resolution. This is analogous to the claims
that have been repeated made about the independence of the homology of a topological space of
for instance the choice of a triangulation.

1.5 Group homology
One of the first striking realisation that algebraic topology (homology etc) and homological
algebra (minimal resolutions etc) were very closely related was the realisation that the homology
of Eilenberg-MacLane spaces had a purely algebraic description. The situation is the following:

• Recall that a (Hausdorff say) space X is contractible21 if it is non-empty and there is a
continuous map F : X × [0, 1] → X such that F (−, 0) : X → X is the identity map and
F (−, 1) : X → X is constant.

• A group G acting continuously on X (i.e., G × X → X is a continuous map) acts ac-
tion!freefreely on X if for all x ∈ X gx = x implies that g = e.

• An action is proper if each x ∈ X has a neighbourhood x ∈ U ⊆ X such that gx ∈ U =⇒
g = e. In particular the action is free.

• The relevant result (proved by Eilenberg22 and Mac Lane23) is then that if one considers
the quotient space X/G of a proper action on a contractible space X (which is a space as
nice as X because the action is proper), then its homology Hk(X/G,Z) only depends on
the group G and was eventually also denoted Hk(G,Z), the group homology of G.

Example: i) The action of Z and R given by n · r = r+n is proper and R is contracible by the
map (r, t) 7→ (1− t)r. The map R → S1 given by r 7→ e2πir identifies R/Z with the circle. We
have already computed the homology of the circle so that we get H0(Z,Z) = Z and H1(Z,Z) = Z
and all other homology groups are equal to zero.

ii) A more complicated example is concerned with the group Z/2. We define the infinite
dimensional sphere S∞ as S∞ := {(xi) ∈ RN | xi = 0 for i >> 0,

∑
i x

2
i = 1 } (where of course

the index from which the xi vanish is allowed to depend on the vector). It is the union of the
finite dimensional spheres Sn can be identified with the subset of S∞ for which xi = 0 when
i > n. We have Z/2 acting on S∞ by 1 · (xi) = (−xi), i.e., it maps a point to its antipodal point.
This action is proper and the quotient space can, by analagy with how we defined the projective
plane, be called the infinite dimensional projective space P∞. We shall find a triangulation of
P∞ and compute its homology thus showing that

Hk(Z/2,Z) =


Z when k = 0,
0 when k is odd,
Z/2 when k > 0 is even.

iii) It is possible to go the other way around: We may have a topological space Y which is of
the form X/G and then (provided that we have an algebraic description of Hk(G,Z), as we do)

20For definition see http://en.wikipedia.org/wiki/Tensor_product.
21For definition see http://en.wikipedia.org/wiki/Contractible.
22Samuel Eilenberg, 1913–1998
23Saunders Mac Lane, 1909–2005

http://en.wikipedia.org/wiki/Tensor_product
http://en.wikipedia.org/wiki/Contractible
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compute its homology by computing the group homology of G. Such a space is denoted K(G, 1)
or BG (as it to a large enough extent only depends on G).

iv) Examples of K(G, 1)’s are given by closed orientable (say) surfaces24 which are classified
by their genus g ≥ 0. Except for g = 0 (which is the sphere S2) they are K(πg, 1)’s where the
group πg is a very interesting interesting group. The case of g = 1 is a little bit special as the
surface is just S1 × S1 = R/Z×R/Z = R2/Z2, which tells us that π1 = Z2. For larger g πg is
non-commutative with very interesting properties. (To be truthful this is probably not a good
example of an algebraic computation being easier than the topological as it is very easy to do
the calculation of the homology of a closed surface.)

v) Another example of aK(G, 1) is a wedge25 of circles, a collection of circles with all elements
1 ∈ S1 identified. The group G in question is the free group26 on generators one for each circle.

vi) There are (surprisingly) many naturally occurring examples ofK(G, 1)’s. Often the groups
are natural examples of group (such as SLn(Z), the group of integer matrices with determinant
1) but are fairly complicated. Hence, their group homology is usually studied by combining
algebraic and topological techniques.

One method to give an algebraic description of group homology is as follows: One can reduce
(using the indepence result already mentioned) to the case when X has a triangulation and G
permutes the simplices. One may also assume27 that only the identity element of G maps a
simplex to itself. This means that the k-chains Ck(X,Z) is a module over the group ring28 Z[G]
and as such it is free module. Indeed, by picking representatives for the orbits of the G-action
on the k-simplices we get a basis. Furthermore, the differential ∂k : Ck(X,Z)→ Ck−1(X,Z) is a
Z[G]-module map. Now, the fact that X is contractible implies that its homology is trivial, i.e.,
Hk(X,Z) = 0 for k > 0 and H0(X,Z) = Z. This means that we have an exact sequence

· · · → Ck(X,Z)→ Ck−1(X,Z)→ · · · → C1(X,Z)→ C0(X,Z)→ Z→ 0

and if we let G act trivially on Z then it is a sequence of Z[G]-modules. This is then interpreted as
saying that · · · → Ck(X,Z)→ · · · → C0(X,Z) is a free (as the modules involved are free) resolu-
tion of the module Z. This is completely analogous to the case of Hilbert’s syszygy theorem where
we constructed a (minimal, graded) free resolution of R/I. The next step is to use the fact that
X/G acquires an induced triangulation from that of X, the simplices are the images of the sim-
plices ofX and two simplices ofX map to the same simplex ofX/G if one can be transformed into
the other by an element of G, i.e., the simplices of X/G correspond to G-orbits of the simplices of
X. This fits very well in with the tensor product operation: If F = Z[G]e is the free module with
basis e, then F

⊗
Z[G] Z (where G acts trivially on Z) is a free Z-module with basis e⊗1 and more

generally if F is a free Z[G]-module with basis eα, then F
⊗

Z[G] Z is a free Z-module with basis
eα⊗1. From this it follows that Ck(X,Z)

⊗
Z[G] Z is the free module with basis in bijection with

the G-orbits on the k-simplices of X, i.e., Ck(X,Z)
⊗

Z[G] Z can be identified with Ck(X/G,Z).
Under this identification the induced map ∂k ⊗ 1: Ck(X,Z)

⊗
Z[G] Z→ Ck−1(X,Z)

⊗
Z[G] Z can

be identified with ∂k : Ck(X/G,Z) → Ck−1(X/G,Z) and thus the homology of the complex
· · · → Ck(X,Z)

⊗
Z[G] Z → · · · → C0(X,Z)

⊗
Z[G] Z can be identified with the homology of

X/G. It is then a fundamental theorem of homological algebra that this homology does not de-
pend one the chosen resolution but only on the module (in this case Z with trivial action). (This
is the algebraic version of the Eilenberg-MacLane result that the homology of X/G for a proper
action of G on the contractible space X.) In fact for this reason, if one has a ring S, a module29
M together with a free resolution F. →M and a module30 N , then the i’th homology of F.

⊗
S N

24For definition see http://en.wikipedia.org/wiki/Surface\#Closed_surfaces.
25For definition see http://en.wikipedia.org/wiki/Wedge_sum.
26For definition see http://en.wikipedia.org/wiki/Free_group.
27This is actually automatic, using the Brouwer fixed point theorem.
28For definition see http://en.wikipedia.org/wiki/Group_ring.
29In general case this should be a right module. For commutative rings or group algebras this does not matter.
30Left module!

http://en.wikipedia.org/wiki/Surface#Closed_surfaces
http://en.wikipedia.org/wiki/Wedge_sum
http://en.wikipedia.org/wiki/Free_group
http://en.wikipedia.org/wiki/Group_ring
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is denoted TorSi (M,N). Hence our argument gives the formula Hk(X/G,Z) = Tor
Z[G]
k (Z,Z).

Similarly, in the Hilbert case we have TorRi (R/I,k) =
⊕

j k(eij) showing that the degrees of the
minimal generators are in fact independent of the resolution.
Example: The triangulation31 of S∞ alluded to above gives the following complex. To make it
readable we denote by σ the non-identity element of Z/2 and by 1 the identity element. With
that notation the group algebra Z[σ] has 1 (with acts as its identity element) and σ with the
only non-trivial part of its multiplication table given by σ2 = 1 (so that it can be thought of as
Z[x]/(x2 − 1)). The complex then is

· · · → Z[σ]
σ+1−−−→ Z[σ]

σ−1−−−→→ · · · σ−1−−−→ Z[σ]→ Z→ 0.

Note that (σ + 1)(σ − 1) = σ2 − 1 = 0 so that the composite of two adjacent maps is indeed 0.
That it is exact is a simple computation. Tensoring with Z turns each Z[σ] into a Z and as σ
acts as 1 on Z, σ − 1 acts as 1 − 1 = 0 and σ + 1 as 1 + 1 = 2. This means that the tensored
resolution becomes

· · · → Z
2−→ Z

0−→→ · · · 0−→ Z

and the homology of this complex is clearly Z in degree 0, Z/2 in all other even degrees and 0
in odd degrees.

Even though the definition of group homology was discovered first when one knew that the
homology of an Eilenberg-MacLane space only depended on the group, low degree homology had
been independently discovered previously.

• We of course have H0(G,Z) = Z.

• We have thatH1(G,Z) = G/[G,G], where [G,G] is the subgroup generated by commutators
[g, h] := ghg−1h−1 (which is a normal subgroup). This is a commutative group, in fact it
is the maximal commutative quotient of G and as such is of great interest in group theory.

• H2(G,Z) is the so called Schur32 multiplier. Knowing it allows one to understand central
extensions of G; surjective maps H → G such that the kernel lies in the center33 of H.

31Technically, as we shall see, it is not quite a triangulation but a generalisation called a cell decomposition.
32Issai Schur, 1875 - 1941
33For definition see http://en.wikipedia.org/wiki/Group_center.

http://en.wikipedia.org/wiki/Group_center

