Homework number 1 to SF2736, fall 2011.

Please, deliver this homework at latest on Tuesday, November 8.

1. (0.2 p$)$ Find all solutions to the equation

$$
6 x+9 y=15
$$

in the ring Z_{18}.
2. (0.1 p) Find all solutions to the equation

$$
6 x+9 y=15
$$

in the ring Z_{19}.
3. (0.2) Find the number of solutions to an equation

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

in a ring Z_{p}, where p is a prime number.
4. (0.2p) Give, and discuss, i.e., and sketch a proof of a more general result from which your answer to the previous problem follows.
5. (0.2 p$)$ Let p be a prime number. The set of all n-tuples $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{i} \in Z_{p}$, can be regarded as a vector space, denoted Z_{p}^{n}, with the elements \bar{x} as vectors and the elements of Z_{p} as scalars. You do not need to verify this. However, explain why the following dotproduct

$$
\bar{x} \cdot \bar{y}=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

is not suitable for defining length of vectors, as it is done in real vector spaces.
6. (0.1p) Consider the vector space Z_{p}^{n} and the dotproduct defined as in the previous problem. To every subspace U of Z_{p}^{n} define U^{\perp} to be the following set

$$
U^{\perp}=\left\{\bar{y} \in Z_{p}^{n} \mid \bar{y} \cdot \bar{x}=0 \text { for all } \bar{x} \in U\right\}
$$

Find and describe an example, i.e., find p, n and U, such that

$$
U=U^{\perp}
$$

