Matematiska Institutionen
KTH

Homework number 4 to SF2736, fall 2011.

Please, deliver this homework at latest on Tuesday, November 29.

1. $(0.2 \mathrm{p})$ Let (G, \cdot) denote the group that consists of all elements in the ring Z_{20} that are invertible by multiplication. This group is isomorphic to a direct product of cyclic groups. Find this direct product of cyclic groups and describe the isomorphism.
2. (0.2 p) Consider the group \mathcal{S}_{8} consisting of all permutation of the set $\{1,2,3, \ldots, 8\}$. Find all possible orders of the elements of \mathcal{S}_{8}.
3. (0.3p) Show that if H and K are subgroups of an abelian group G satisfying

$$
|H| \cdot|K|=|G| \quad \text { and } \quad|H \cap K|=1
$$

then every element g in G can in a unique way be written as a sum

$$
g=h+k
$$

of elements $h \in H$ and $k \in K$.
4. (0.3p) Show that all abelian groups of size 35 are isomorphic.

