Matematiska Institutionen
KTH

Solutions to homework number 2 to SF2736, fall 2011.

1. (0.2p) Let $M=\{1,2,3,4,5,6,7\}$. Describe all equivalence relations \mathcal{R} on M such that

$$
\{(1,5),(1,4),(2,3),(3,6)\} \subseteq \mathcal{R}
$$

Solution: Every equivalence relation is uniquely described by its equivalence classes. By transitivity and symmetry we get that the elements 1,5 and 4 must belong to the same equivalence class, and that 2,3 and 6 must belong to the same equivalence class. So one possibility to partition M into equivalence classes, with the given property on the equivalence relation is

$$
M=C_{1} \cup C_{2} \cup C_{7},
$$

where $C_{1}=\{1,5,4\}, C_{2}=\{2,3,6\}$ and $C_{7}=\{7\}$. Then, if some element in C_{1} is related to some element in C_{2}, then all elements in these equivalence classes are related to each other and we get the partition

$$
M=\{1,2,3,4,5,6\} \cup\{7\}
$$

Similarly we may derive another three partitions of M :

$$
M=\{1,5,4,7\} \cup\{2,3,6\}
$$

and

$$
M=\{1,5,4\} \cup\{2,3,6,7\}
$$

and

$$
M=\{1,2,3,4,5,6,7\}
$$

These five partitions of M describe the feasible equivalence relations.
2. (0.2 p) Let N denote the set $\{0,1,2,3, \ldots\}$. Find and give an explicit description of a bijection from $N \times N$ to N.

Solution: We enumerate the elements in $N \times N$ in the following order

$$
(0,0)
$$

as the first element. Next the following two:

$$
(1,0) \quad(0,1)
$$

The next three elements will be

$$
(2,0) \quad(1,1) \quad(0,1)
$$

And the next four will be

$$
(3,0) \quad(2,1) \quad(1,2) \quad(0,3)
$$

And so on. We observe that the sum $n+m$ of the components in the pair (n, m) is equal to the number of pairs in the preceding row. Thus we have enumerated in total

$$
1+2+\ldots+(n+m)=\frac{(n+m)(n+m+1)}{2}
$$

pairs when we continue the enumeration with the pairs from the row of (n, m).

The bijective map $f: N \times N \rightarrow N$ that describes the enumeration starts with

$$
f(0,0)=0 .
$$

Hence, for $k=1,2, \ldots$,

$$
f(k, 0)=\frac{k(k+1)}{2},
$$

and continuing the enumeration we get for $r=0,1, \ldots, k$,

$$
f(k-r, r)=\frac{k(k+1)}{2}+r
$$

Now, with $k=n+r$ and $m=r$, we arrive with the explicit formula

$$
f(n, m)=\frac{(n+m)(n+m+1)}{2}+m .
$$

3. (0.3p) Is the set of functions from the set of positive integers Z^{+}to the set $\{0,1\}$ an infinite countable set? Explain your answer with great care!

Solution: Every map f from $Z^{+}=\{1,2,3, \ldots\}$ to $\{0,1\}$ corresponds to an infinite binary sequence

$$
f=(f(1), f(2), f(3), \ldots)
$$

Assume there is an enumeration of all such functions:

$$
f_{1}, f_{2}, f_{3}, \ldots
$$

Every function is then included in this enumeration. However, the function f defined by

$$
f(i) \neq f_{i}(i)
$$

for $i=1,2, \ldots$, is not contained in this enumeration. To see this, assume that $f=f_{j}$ for some j. As $f(j) \neq f_{j}(j)$, this cannot be the case.
The assumption that the enumeration of functions above contains all functions is thus wrong. We may consequently conclude that no enumeration of functions from Z^{+}to $\{0,1\}$ can contain all functions.
4. (0.3p) Is the set of bijections from Z^{+}to Z^{+}an infinite countable set? Explain your answer with great care!

Solution: Let \mathcal{B} denote the set of all bijections from Z^{+}to Z^{+}, and let \mathcal{S} denote the family of all infinite subsets of Z^{+}. We shall define an injective map $I: \mathcal{S} \rightarrow \mathcal{B}$. By the diagonalization method of Cantor it is clear that \mathcal{S} is not countable infinite. Then the subset $I(\mathcal{S})$ of \mathcal{B} is not countable infinite, and, as a countable infinite set cannot contain a not countable infinite set, it follows that \mathcal{B} cannot be countable infinite.
Now to the definition of the function I. To any subset $S=\left\{i_{1}, i_{2}, i_{3}, \ldots\right\}$ of Z^{+}we associate a bijection f from Z^{+}into itself, $f=I(S)$, defined by

$$
f(i)=\left\{\begin{array}{lll}
i & \text { if } \quad i \notin S \\
i_{2 k} & \text { if } \quad i=i_{2 k-1} \\
i_{2 k-1} & \text { if } \quad i=i_{2 k}
\end{array}\right.
$$

where k takes the values $1,2,3, \ldots$. Clearly, from the definition of f follows that $f=I(S)$ is a bijective map for every infinite subset S of Z^{+}. As furthermore $I(S)(j)=j$ if and only if $j \notin S$, we may conclude that the map I is injective. The problem is solved.

