Solutions to homework number 1 to SF2736, fall 2011.

1. (0.2 p) Find all solutions to the equation

$$
6 x+9 y=15
$$

in the ring Z_{18}.
Solution: Evidently $(x, y)=(1,1)$ is a solution. Assume that $\left(x^{\prime}, y^{\prime}\right)$ is another solution. Then

$$
6 x+9 y=6 x^{\prime}+9 y^{\prime} \quad \Longleftrightarrow \quad 6\left(x-x^{\prime}\right)=9\left(y^{\prime}-y\right)
$$

in the ring Z_{18}. However in Z_{18} the set $\left\{6 z \mid z \in Z_{18}\right\}$ is equal to the set $\{0,6,12\}$ and the set $\left\{9 w \mid w \in Z_{18}\right\}$ is the set $\{0,9\}$. As the intersection of these sets just consists of the element 0 , we get that $\left(x^{\prime}, y^{\prime}\right)$ is a solution if and only if $6\left(x-x^{\prime}\right)=0$ and $9\left(y^{\prime}-y\right)=0$, that is,

$$
x-x^{\prime} \in\{3,6,9,12,15\} \quad \text { and } \quad y^{\prime}-y \in\{0,2,4,6,8,10,12,14,16\}
$$

or equivalently

$$
x^{\prime} \in 1-\{3,6,9,12,15\}=\{1,4,7,10,13,16\}
$$

and

$$
y^{\prime} \in 1+\{0,2,4,6,8,10,12,14,16\}=\{1,3,5,7,9,11,13,15,17\}
$$

So in total there are $6 \cdot 9=54$ distinct solutions to the given equation.
2. (0.1p) Find all solutions to the equation

$$
6 x+9 y=15
$$

in the ring Z_{19}.
Solution: As $6 \cdot 3=-1$ we get that $6 \cdot(-3)=1$ and hence 6 has the invers $-3=16$ in the ring Z_{19}. The given equation is thus equivalent to the equation

$$
x=(-3) \cdot(-4)-(-3) \cdot 9 y
$$

that can be simplified to

$$
x=12+8 y
$$

To each element y in Z_{19} we can find an element $x \in Z_{19}$ so that the pair (x, y) satisfies the equation above, namely
Answer: $(x, y) \in\left\{(12+8 t, t) \in Z_{19} \times Z_{19} \mid t \in Z_{19}\right\}$.
3. (0.2) Find the number of solutions to an equation

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b,
$$

in a ring Z_{p}, where p is a prime number.

Solution: In case all elements $a_{1}, a_{2}, \ldots, a_{n}$ are equal to zero and $b \neq 0$ then there is no solution, and in case $b=0$ any n-tuple of values $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ will give a solution. In the latter case the number of solutions is equal to p^{n}.
If one of the elements a_{i} is non zero, than it has an inverse $c=a_{i}^{-1}$ and we get the equivalent equation

$$
x_{i}=c \cdot b-\sum_{k \neq i} c a_{k} x_{k}
$$

For every possible choice of value to each of the variables x_{k}, for $k \neq i$, we can find a value to x_{i} that satisfies the equation above. Hence
Answer: p^{n-1} possible solutions in case some a_{i} is non zero. For the other cases see above.
4. (0.2 p$)$ Give, and discuss, i.e., and sketch a proof of a more general result from which your answer to the previous problem follows.

Solution: We consider the theory for systems of linear equations

$$
\mathbf{A} \bar{x}=\bar{b},
$$

where \mathbf{A} is a $n \times m$-matrix and \bar{x} and \bar{b} are column vectors.
Linear independence can be defined similarly in Z_{p}^{n} as in the real vector space R^{n}. Furthermore, any theorem in the theory for vector spaces that can be proven by just using ordinary calculations, addition, subtraction, multiplication and dividing with the non zero elements from Z_{p} can be proven to be true also in Z_{p}^{n}. So we can define the $\operatorname{rank}, \operatorname{rank}(\mathbf{A})$, of the $n \times m$-matrix \mathbf{A}, the null space, $N(\mathbf{A})$, of a matrix, as well as we can prove the dimension theorem

$$
\operatorname{rank}(\mathbf{A})+\operatorname{dim}(\mathbf{N}(\mathbf{A}))=\mathbf{m} .
$$

Thus, also from linear algebra, if \bar{b} is in the column space of \mathbf{A}, then we get a solution with $m-\operatorname{rank}(\mathbf{A})$ parameters. Each of these parameters can be chosen arbitrarily in p distinct ways. Hence
Answer: The number of solutions to the linear system $\mathbf{A} \bar{x}=\bar{b}$ is zero if \bar{b} is not in the column space of \mathbf{A}. Else the number of solutions is

$$
p^{m-\operatorname{rank}(\mathbf{A})}
$$

(where m is the number of indeterminates).
5. (0.2p) Let p be a prime number. The set of all n-tuples $\bar{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where $x_{i} \in Z_{p}$, can be regarded as a vector space, denoted Z_{p}^{n}, with the elements \bar{x} as vectors and the elements of Z_{p} as scalars. You do not need to verify this. However, explain why the following dotproduct

$$
\bar{x} \cdot \bar{y}=x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}
$$

is not suitable for defining length of vectors, as it is done in real vector spaces.

Solution: Just the zero vector should have length 0 . In Z_{2}^{2} the vector $(1,1)$ gives with the definition above the dot product with itself

$$
(1,1) \cdot(1,1)=1 \cdot 1+1 \cdot 1=0
$$

so the normal way to define length, i.e.

$$
\|\bar{u}\|=\sqrt{\bar{u} \cdot \bar{u}}
$$

is not good here.
6. (0.1p) Consider the vector space Z_{p}^{n} and the dotproduct defined as in the previous problem. To every subspace U of Z_{p}^{n} define U^{\perp} to be the following set

$$
U^{\perp}=\left\{\bar{y} \in Z_{p}^{n} \mid \bar{y} \cdot \bar{x}=0 \text { for all } \bar{x} \in U\right\}
$$

Find and describe an example, i.e., find p, n and U, such that

$$
U=U^{\perp}
$$

Solution: Take $p=2, n=2$ and $U=\{(0,0),(1,1)\}$, that is, a 1 dimensional subspace of Z_{2}^{2} with basis $(1,1)$. By the dimension theorem discussed above, the solution space to

$$
1 \cdot x+1 \cdot y=0
$$

has dimension $2-1=1$. As easily verified the solution space is U^{\perp} and is equal to U.

