Matematiska Institutionen
KTH

Solutions to homework number 4 to SF2736, fall 2011.

1. $(0.2 \mathrm{p})$ Let (G, \cdot) denote the group that consists of all elements in the ring Z_{20} that are invertible by multiplication. This group is isomorphic to a direct product of cyclic groups. Find this direct product of cyclic groups and describe the isomorphism.

Lösning: The invertible elements in this ring are

$$
(G, \cdot)=\{1,3,7,9,11,13,17,19\},
$$

which we know constitute a group $G=(G, \cdot)$ under multiplication. We first find the orders of the elements. We know that the order $\sigma(g)$ divides the size $|G|$ of G, for every element $g \in G$.

$$
3^{2}=9 \neq 1 \quad 3^{4}=1
$$

Hence the order of 3 is 4, and the group generated by 3 consists of the following elements:

$$
\langle 3\rangle=\left\{3,3^{2}=9,3^{3}=7,3^{4}=1\right\} .
$$

The element 9 has order 2 and the element 7 has order 2 . The elements in the coset $19\langle 3\rangle$ are the remaining elements:

$$
(-1)\langle 3\rangle=\{17,11,13,19\}
$$

have also the orders 1,2 and 4 as

$$
((-1) g)^{4}=g^{4}=1 \quad \text { and } \quad((-1) g)^{2}=g^{2}
$$

for all elements g in $\langle 3\rangle$.
As no element has order 8 , we conclude that G is not a cyclic group. We claim that G is isomorphic to the group

$$
\left(Z_{2},+\right) \times\left(Z_{4},+\right)=\left\{(h, k) \mid h \in\left(Z_{2},+\right), k \in\left(Z_{4},+\right)\right\} .
$$

The isomorphism is defined by

$$
\varphi: G \rightarrow\left(Z_{2},+\right) \times\left(Z_{4},+\right), \quad \varphi:(-1)^{e} g^{f} \mapsto(e, f)
$$

As

$$
(-1)^{e} g^{f} \cdot(-1)^{e^{\prime}} g^{f^{\prime}}=(-1)^{e+e^{\prime}(\bmod 2)} g^{f+f^{\prime}(\bmod 2)}
$$

it is clear that the map φ is an isomorphism.
2. $(0.2 \mathrm{p})$ Consider the group \mathcal{S}_{8} consisting of all permutation of the set $\{1,2,3, \ldots, 8\}$. Find all possible orders of the elements of \mathcal{S}_{8}.

Lösning: We consider the permutations as products of disjoint cycles. Then the order of a permutation is the least common multiple of the lengths of these cycles. Then lengths of the cycles can be

$$
1,2,3,4,5,6,7,8
$$

The sum of the lengths of the disjoint cycles in a permutation can at most be 8 . So a 7 cycle can just appear if the other cycle is a 1 -cycle. A 6 -cycle can appear with two 1 -cycles or a 2 -cycle. So if there are 8 -cycles, 7 -cycles or 6 -cycles in a permutation, then the order of the permutation is 8,7 and 6 .
A 5 -cycle can be combined with just 1-cycles, or one 2 -cycle and one 1 -cycle, or combined with a 3 -cycle. This gives the orders 5,10 and 15 .
A 4-cycle can be combined with a 3 -cycle, and else with 1-cycles and 2 -cycles, so such a permutation can contribute with the orders 12 and 4.

If there are just 3-cycles and/or 2-cycles, the only further orders you obtain is 3,2 and 1 .
So summarizing we get
Answer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15.
3. (0.3p) Show that if H and K are subgroups of an abelian group G satisfying

$$
|H| \cdot|K|=|G| \quad \text { and } \quad|H \cap K|=1
$$

then every element g in G can in a unique way be written as a sum

$$
g=h+k,
$$

of elements $h \in H$ and $k \in K$.
Lösning: First assume there are $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$ such that

$$
h+k=g=h^{\prime}+k^{\prime}
$$

Then

$$
H \ni h-h^{\prime}=k^{\prime}-k \in K
$$

As $|H \cap K|=1$ we get that $H \cap K=\{0\}$ (as $H \cap K$ is a subgroup of G). So

$$
h-h^{\prime} \in K \cap H \quad \Longrightarrow \quad h-h^{\prime}=0 \quad \Longrightarrow \quad h=h^{\prime} .
$$

and similarly for k and k^{\prime}, in fact they are equal. The set

$$
H+K=\{h+k \mid h \in H, k \in K\} \subseteq G
$$

thus contains $|H| \cdot|K|=|G|$ elements, as this is the exact number of combinations $h+k$, with $h \in H$ and $k \in K$, and as furthermore, all these combinations are distinct. So every element of G must belong to $H+K$, which proves the desired result.
4. (0.3p) Show that all abelian groups of size 35 are isomorphic.

Lösning: We claim that every such group G is cyclic. Assume that G is not cyclic. The elements then has order 5 or 7 (or 1) as the order of an element must divide 35 . Assume all elements, except the identity, have order 5. Every non identity element g in a group generated by an element of order 5 must have order 5 , as the order of an element divides the size of the group. Hence

$$
\langle g\rangle=\left\{g, g^{2}, g^{3}, g^{4}, g^{5}=e\right\}=\left\langle g^{2}\right\rangle=\left\langle g^{3}\right\rangle=\left\langle g^{4}\right\rangle
$$

and consequently, every non identity element belongs to one and only one subgroup of size 5 . This implies that the 34 non identity elements in G are partitioned into subsets of type

$$
\langle g\rangle \backslash\{e\}=\left\{g, g^{2}, g^{3}, g^{4}\right\}
$$

i.e., of size 4. This is evidently impossible. Thus G cannot solely consist of elements of order 5 (and the identity).

Similarly we can prove that there can not just be elements of order 7 .
Now let g be an element of order 5 and h an element of order 7. Then, the order of $g h$ divides 35 . It can neither be 5 nor 7 as

$$
(g h)^{5}=g^{5} h^{5}=e h^{5} \neq e, \quad(g h)^{7}=g^{2} e \neq e .
$$

So the order of $g h$ is 35 , the same number as the size of G.
We have proved that G must be cyclic. All cyclic groups of the same size are isomorphic.

