Institutionen för matematik
 KTH

Chaotic Dynamical Systems, SF2720, Fall 2012

Homework assignment 1

The exercises are due on September 28, 2012
(1) Let $f(x)=x^{2}+x$. Find all fixed points of f. Where do nonfixed points go under iteration by f ?
(2) Imagine that you have a calculator with a "cos" button. You enter a number x_{0}, and press " cos". Then you get $x_{1}=\cos \left(x_{0}\right)$. Continuing this process gives you a sequence $x_{0}, x_{1}, x_{2}, \ldots$, where $x_{n}=\cos \left(x_{n-1}\right)$ for $n \geq 1$. Does the sequence converge to something as $n \rightarrow \infty$? If so, does the limit depend on the initial choice x_{0} ? Prove your statements.
(3) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and that f has a periodic point of period 2 . Show that f has a fixed point.
(4) Let $f: I \rightarrow I$ be a continuously differentiable function. Assume that p is a fixed point for f in the interior of I, and that $\left|f^{\prime}(p)\right|<1$. Show that if $g: I \rightarrow I$ is a continuously differentiable function such that

$$
\sup _{x \in I}|f(x)-g(x)|<\varepsilon \text { and } \sup _{x \in I}\left|f^{\prime}(x)-g^{\prime}(x)\right|<\varepsilon,
$$

where ε is sufficiently small, then the function g has a fixed point q, close to p, and $\left|g^{\prime}(p)\right|<1$. Is this necessarily true if we had assumed $\left|f^{\prime}(p)\right|=1$?
(5) Prove remark 11.1.3 (on page 301) in the text book.
(6) Do exercise 2.2.6 (on page 45).
(7) Do exercise 2.3.2 (on page 49).

