Institutionen för matematik
 KTH

Chaotic Dynamical Systems, SF2720, Fall 2012

Homework assignment 3

The exercises are due on November 23, 2012
(1) Let $\omega \in \Omega_{2}^{R}$ (see definition on page 214). Define $W^{s}(\omega)$ to be the set of sequences $\omega^{\prime} \in \Omega_{2}^{R}$ such that $d\left(\sigma^{n}(\omega), \sigma^{n}\left(\omega^{\prime}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$. Identify all the sequences in $W^{s}(\omega)$.
(2) Let $g_{c}(x)=x^{2}+c$. Prove that if $c<1 / 4$, there is a unique $a>1$ such that $g_{c}(x)$ is (topologically) conjugate to $f_{a}(x)=a x(1-x)$ via a map of the form $h(x)=\alpha x+\beta$.
(3) A point p is a non-wandering point for the map f, if for any open set $U \ni p$, there exists $x \in U$ and $n>0$ such that $f^{n}(x) \in U$ (note that we do not require that p itself return to $U)$. Let $N W(f)$ denote the set of all non-wandering points for f.
a) Prove that $N W(f)$ is a closed set.
b) Let f and Λ be as in Proposition 7.4.4 (on page 223). Show that $N W(f)=\Lambda$.
(4) A point p is recurrent for f if for any open set $U \ni p$ there exists $n>0$ such that $f^{n}(p) \in U$.
a) Let f be as in Proposition 7.4.4. Give an example of a non-periodic recurrent point for f.
b) Give an example of a non-wandering point for f (with f as in a)) which is not recurrent.
(5) Let $f: I \rightarrow I$ be a smooth map. The Lyapunov exponent $L(x)$ is defined as

$$
L(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \ln \left|\frac{d}{d x} f^{n}(x)\right|,
$$

provided the limit exists.
a) Given $x_{0} \in I$, let $x_{k}=f^{k}(x), k \geq 1$. Assume that $L\left(x_{0}\right)$ exists. Show that

$$
L\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln \left|f^{\prime}\left(x_{k}\right)\right|
$$

b) Let

$$
f(x)= \begin{cases}2 x, & x \in[0,1 / 2] \\ 2(1-x), & x \in[1 / 2,1]\end{cases}
$$

If $x_{0} \in[0,1]$ is such that $x_{k} \neq 1 / 2$ for all $k \geq 0$, show that $L\left(x_{0}\right)=\ln 2$.
c) Let $f(x)=(3 / 2) x(1-x)$. Compute $L\left(x_{0}\right)$ for $x_{0} \in(0,1)$.
(6) Let

$$
f(x)= \begin{cases}3 x, & x \leq 1 / 2 \\ 3(1-x), & x>1 / 2\end{cases}
$$

a) Show that $f^{n}(x) \rightarrow-\infty$ as $n \rightarrow \infty$ for all $x \notin[0,1]$.
b) Let $\Lambda=\left\{x: f^{n}(x) \in[0,1]\right.$ for all $\left.k \geq 0\right\}$. What kind of set is Λ ?
c) Show that the restriction of f to Λ (i.e., $\left.f\right|_{\Lambda}$) is conjugate to the 2 -shift σ^{R}.

