Institutionen för matematik **KTH** Chaotic Dynamical Systems, SF2720, Fall 2012

Homework assignment 3

The exercises are due on November 23, 2012

- (1) Let $\omega \in \Omega_2^R$ (see definition on page 214). Define $W^s(\omega)$ to be the set of sequences $\omega' \in \Omega_2^R$ such that $d(\sigma^n(\omega), \sigma^n(\omega')) \to 0$ as $n \to \infty$. Identify all the sequences in $W^s(\omega)$.
- (2) Let $g_c(x) = x^2 + c$. Prove that if c < 1/4, there is a unique a > 1 such that $g_c(x)$ is (topologically) conjugate to $f_a(x) = ax(1-x)$ via a map of the form $h(x) = \alpha x + \beta$.
- (3) A point p is a non-wandering point for the map f, if for any open set $U \ni p$, there exists $x \in U$ and n > 0 such that $f^n(x) \in U$ (note that we do not require that p itself return to U). Let NW(f) denote the set of all non-wandering points for f.

a) Prove that NW(f) is a closed set.

b) Let f and Λ be as in Proposition 7.4.4 (on page 223). Show that $NW(f) = \Lambda$.

(4) A point p is recurrent for f if for any open set $U \ni p$ there exists n > 0 such that $f^n(p) \in U$.

a) Let f be as in Proposition 7.4.4. Give an example of a non-periodic recurrent point for f.

b) Give an example of a non-wandering point for f (with f as in a)) which is not recurrent.

(5) Let $f: I \to I$ be a smooth map. The Lyapunov exponent L(x) is defined as

$$L(x) = \lim_{n \to \infty} \frac{1}{n} \ln \left| \frac{d}{dx} f^n(x) \right|,$$

provided the limit exists.

a) Given $x_0 \in I$, let $x_k = f^k(x), k \ge 1$. Assume that $L(x_0)$ exists. Show that

$$L(x_0) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln |f'(x_k)|.$$

b) Let

$$f(x) = \begin{cases} 2x, & x \in [0, 1/2] \\ 2(1-x), & x \in [1/2, 1] \end{cases}.$$

If $x_0 \in [0,1]$ is such that $x_k \neq 1/2$ for all $k \geq 0$, show that $L(x_0) = \ln 2.$

c) Let f(x) = (3/2)x(1-x). Compute $L(x_0)$ for $x_0 \in (0,1)$.

(6) Let

$$f(x) = \begin{cases} 3x, & x \le 1/2 \\ 3(1-x), & x > 1/2 \end{cases}$$

a) Show that $f^n(x) \to -\infty$ as $n \to \infty$ for all $x \notin [0, 1]$. b) Let $\Lambda = \{x : f^n(x) \in [0, 1] \text{ for all } k \ge 0\}$. What kind of set is Λ ?

c) Show that the restriction of f to Λ (i.e., $\left.f\right|_{\Lambda})$ is conjugate to the 2-shift σ^R .