Homework 1: The definition

Should be given to Afshin Goodarz, afshingo@math.kth.se, no later than Oct. 30.

1. Let d be a non-negative integer and put $P=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} ; x^{2}-d y^{2}=1\right\}$. Let $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ be elements in P. Consider the following operation

$$
\left(x_{0}, y_{0}\right) \cdot\left(x_{1}, y_{1}\right)=\left(x_{0} x_{1}+d y_{0} y_{1}, x_{0} y_{1}+x_{1} y_{0}\right)
$$

Show that • is a binary operation on P and that P endowed with this operation is a group.
2. Let H be the following set of matrices

$$
\left\{\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right) ; a, b \in \mathbb{R} \text { and } a^{2}+b^{2} \neq 0\right\}
$$

Show that H endowed with the usual matrix multiplication is a group.
3. Let \mathbb{C}^{*} be the group consisting of the non-zero complex numbers together with the usual multiplication of complex numbers and let H be as in exercise 2. Show that the map

$$
\varphi: \mathbb{C}^{*} \rightarrow H
$$

given by

$$
a+i b \mapsto\left(\begin{array}{cc}
a & -b \\
b & a
\end{array}\right)
$$

is an isomorphism.

