SF2729 Groups & Rings

Homework 3: Cyclic groups

- 1. Let G be a group. The center of G is defined as $Z(G) = \{g \in G; gx = xg \text{ for all } x \in G\}$. Show that Z(G) is a subgroup of G and calculate $Z(S_3)$.
- 2. Let G be a group and H, K be subgroups of G. The *intersection* of H and K is defined as $H \cap K = \{g \in G; g \in H \text{ and } g \in K\}$. It is a subgroup of G. Let $G = \langle g \rangle$ be a cyclic group of order n with generator g. Suppose that d and e divides n. Calculate the order of $\langle g^d \rangle \cap \langle g^e \rangle$.
- 3. The multiplication in the symmetric group is defined as function composition. In practical calculations however, most people prefer to calculate the product of permutations $\sigma\tau$ as "first σ , then τ " rather than "first τ , then σ ". Show that this doesn't matter. More precisely, let (G, *) be a group let (G, *') be the group consisting of the same set of elements as (G, *), but with multiplication defined as g *' h = h * g. Then show that (G, *) and (G, *') are isomorphic.
- 4. Voluntary exercise. Euler's totient function $\varphi(n)$ can be defined as the number of generators of a finite cyclic group of order n. Show, using the structure theorem of the subgroups of a finite cyclic group, that

$$\sum_{d|n} \varphi(d) = n$$

where the summation is taken over the divisors d of n.