SF2729 Groups \& Rings

Homework 3: Cyclic groups

1. Let G be a group. The center of G is defined as $Z(G)=\{g \in G ; g x=x g$ for all $x \in G\}$. Show that $Z(G)$ is a subgroup of G and calculate $Z\left(S_{3}\right)$.
2. Let G be a group and H, K be subgroups of G. The intersection of H and K is defined as $H \cap K=\{g \in G ; g \in H$ and $g \in K\}$. It is a subgroup of G. Let $G=\langle g\rangle$ be a cyclic group of order n with generator g. Suppose that d and e divides n. Calculate the order of $\left\langle g^{d}\right\rangle \cap\left\langle g^{e}\right\rangle$.
3. The multiplication in the symmetric group is defined as function composition. In practical calculations however, most people prefer to calculate the product of permutations $\sigma \tau$ as "first σ, then τ " rather than "first τ, then σ ". Show that this doesn't matter. More precisely, let $(G, *)$ be a group let $\left(G, *^{\prime}\right)$ be the group consisting of the same set of elements as $(G, *)$, but with multiplication defined as $g *^{\prime} h=h * g$. Then show that $(G, *)$ and $\left(G, *^{\prime}\right)$ are isomorphic.
4. Voluntary exercise. Euler's totient function $\varphi(n)$ can be defined as the number of generators of a finite cyclic group of order n. Show, using the structure theorem of the subgroups of a finite cyclic group, that

$$
\sum_{d \mid n} \varphi(d)=n
$$

where the summation is taken over the divisors d of n.

