SF2729 Groups \& Rings

Homework 4: Permutations

1. Let $n \geq 2$ be an integer. Let $\sigma \in S_{n}$ be a permutation. Show that the order of σ is the least common multiple of the lengths of its cycles. For a hint, see the book, page 107 .
2. Let $n \geq 2$ be an integer. Let $\alpha, \tau \in S_{n}$, where α is the k-cycle ($a_{1} a_{2} \cdots a_{k}$). Show that

$$
\tau \alpha \tau^{-1}=\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \cdots \tau\left(a_{k}\right)\right)
$$

3. Use previous exercise to show that if ρ and τ are transpositions, then there is a permutation σ such that $\sigma \rho \sigma^{-1}=\tau$.
4. A (complex) linear character of a group G is a homomorphism from G into the multiplicative group of the complex numbers. That is, a homomorphism $G \rightarrow$ $\mathbb{C}^{*}=\mathbb{C} \backslash\{0\}$. Show that the signature is the only non-trivial linear character of S_{n} by first showing that if $\chi: S_{n} \rightarrow \mathbb{C}^{*}$ is linear character, then $\chi\left(\sigma \tau \sigma^{-1}\right)=$ $\chi(\tau)$ for all permutations $\sigma, \tau \in S_{n}$. In particular, using previous exercise, χ is constant on the transpositions. Now use the fact that $1=\chi\left(\tau^{2}\right)=(\chi(\tau))^{2}$ if τ is a transposition and that any permutation may be written as a product of transpositions to conclude that χ, if non-trivial, is indeed the signature.
