SF2729 Groups \& Rings

Homework 6: Action.

1. Let G be a finite group and $H, K \leq G$ be subgroups. Denote by $H K$ the set $\{h k ; h \in H, k \in K\}$. Show that

$$
|H K|=\frac{|H||K|}{|H \cap K|}
$$

(Hint: Let $X=G / K$ and let H act on X by left multiplication. What is the orbit and the stabilizer of $K \in X$?)
2. Let G be a group and suppose that $N \unlhd G$. Let $g \in N$. Show that the conjugacy class of g in G is a subset of N and that it is a union of conjugacy classes of N.
3. Let G be a group of order $2 m$, where m is odd. Show that G has a subgroup of order m, which then must be normal. (Hint: Let G act on itself by left multiplication, and so obtain a homomorphism $G \rightarrow S_{G}$. By an earlier exercise, there is an element, $g \in G$, of order 2 . What does the image of g in S_{G} look like, if you use cycle notation? Show that it is an odd permutation and consider the kernel of the homomorphism $G \rightarrow S_{G} \xrightarrow{\text { sgn }}\{ \pm 1\}$.)

