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1 Modules

Throughout, let R be a (not necessarily commutative) ring with unity.

Definition. A left (resp. right) module over R is an abelian group M with a bilinear
map (called R-action, scalar multiplication, or just multiplication)

· : R×M→ M (resp. M× R→ M)

with the following properties:

Unitality: 1 ·m = m (resp. m · 1 = m) for all m ∈ M;

Associativity: (rs) ·m = r · (s ·m) (resp. m · (rs) = (m · r) · s).

Note that the distinction between left and right modules is not just typographical (i. e.
which element do we write on the left and which one on the right). They differ in how
associativity works: if M was a right module and we insisted on writing the R-action on
the left, we would have

(rs) ·m = s · (r ·m).

As we did for rings, we will often omit the symbol “·” for the bilinear map.

Remark 1.1. If R is commutative, then any left module is also a right module and vice
versa, hence we will just speak of an R-module.

Example 1.2. The trivial group 0 is a (left or right) module over any ring.

Example 1.3. The ring R with its multiplication R× R → R is a module over itself –
both a right module and a left module.

Remark 1.4. If k is a field then k-modules are the same as k-vector spaces. The term
“vector space” is only used for fields.

Lemma 1.5. Let M be a left R-module. Then:
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1. n ·m = m + · · ·+ m (n ∈ N0 factors; m ∈ M)

2. (−1) ·m = −m

Proof. Here we think of n ∈ Z as an element of R by the unique ring map Z→ R. Part
(1) follows by induction from bilinearity and unitality:

n ·m = (1 + · · ·+ 1) ·m = 1 ·m + · · ·+ 1 ·m = m + · · ·+ m.

For (2), we compute

(−1) ·m + m = (−1) ·m + 1 ·m = (−1 + 1) ·m = 0 ·m = 0,

using bilinearity and unitality again.

Corollary 1.6. Every abelian group A is a Z-module in a unique way, and every Z-module
occurs in this way.

Proof. Lemma 1.5 tells us that there is precisely one way of defining a Z-action (for
n < −1: we have to define n ·m = −[(−n) ·m] by associativity.

Example 1.7 (products of modules). If M and N are left R-modules then we define their
product M× N to be the module whose underlying abelian group is M× N, and where
the R-action is defined by

r · (m, n) = (r.m, r.n)

More generally, if I is a possibly infinite set and {Mi}i∈I is a family of left R modules
indexed by I, we define their product ∏i∈I Mi in the same way:

r · (mi)i∈I = (rmi)i∈I .

Example 1.8 (direct sums of modules). If I is again a possibly infinite set and {Mi}i∈I is
a family of left R-modules, we define their direct sum⊕

i∈I

Mi ⊆∏
i∈I

Mi

to be the subgroup of those families (mi)i∈I where all but finitely many mi are 0. This is
clearly again a left R-module.

Remark 1.9. Clearly, products and direct sums can be defined for right modules in the
same way. The direct sum and the product of finitely many modules are the same, since
then the condition that all but finitely many mi vanish is empty.
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1.1 Submodules and quotient modules

From now on, we will restrict our attention to left R-modules, with the understanding
that everything we say has an analog for right R-modules.

Definition. Let M be a left R-module. An left R-submodule of M is a sub-abelian group
N < M which is closed under scalar multiplication, i. e. which satisfies

r · n ∈ N for r ∈ R, n ∈ N.

Remark 1.10. If we consider the ring R as a module over itself (Ex. 1.3) then the left
R-submodules of R are precisely the left ideals of R. This follows immediately from the
definition.

Example 1.11 (non-direct sums). If N1 and N2 are left R-submodules of a left R-module
M then the module

N1 + N2 = {n1 + n2 ∈ M | n1 ∈ N1, n2 ∈ N2}

is a submodule of M as well.

Lemma 1.12. Let N < M be a left R-submodule. Then the quotient abelian group M/N
becomes a left R-module (the quotient module) by defining r · [m] = [r ·m].

Proof. We have to check well-definedness. Given another representative m + n of the
equivalence class [m], with n ∈ N, we compute

r · (m + n) = r ·m + r · n ∈ r ·m + N

because N is a submodule. Hence [r · (m + n)] = [r ·m].

Notice that in contrast to groups and rings, where quotients can only be formed under
additional hypotheses (normal subgroups resp. ideals), quotient modules always exist.

1.2 Homomorphisms

Definition. A homomorphism of left R-modules M, N is an abelian group homomor-
phism f : M→ N which is R-linear, i. e. which satisfies

f (r ·m) = r · f (m) for all r ∈ R, m ∈ M

A bijective homomorphism is called an isomorphism, and if an isomorphism between
two modules M, N exists then we call them isomorphic and write M ∼= N.

Lemma 1.13. Let f : M→ N be a homomorphism of left R-modules. Then the kernel and image
of f are left R-submodules.
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Proof. We know they are sub-abelian groups, so it suffices to show they are closed under
scalar multiplication. If r ∈ R and m ∈ ker( f ) then

f (r ·m) = r · f (m) = r · 0 = 0,

so r ·m ∈ ker( f ). Similarly, if n ∈ im( f ), say n = f (m), then r · n = r · f (m) = f (r ·m) ∈
im( f ).

Remark 1.14. If N < M is a left sub-R-module then the canonical map M → M/N
sending m to [m], is a homomorphism. If a homomorphism f : M→ N of left R-modules
is an isomorphism then the inverse map f−1 is also an isomorphism.

Definition. A left R-module M is called free if it is isomorphic to a (possibly infinite)
direct sum of copies of the R-module R. If M ∼= Rn =

⊕n
i=1 R then we say that M has

rank n.

A basic theorem of linear algebra says that any vector space (over a field k) has a basis,
i. e. it is free as a module over k. This does not hold for general rings: the Z-module
Z/nZ, for instance, cannot be free because it is finite, and any nontrivial free Z-module
is infinite.

It is not at all obvious that the notion of rank is well-defined; why couldn’t we have
that Rn ∼= Rm for some n 6= m? Surprisingly, this can indeed happen, but only for
noncommutative rings. (And also for the trivial ring R = 0.)

Theorem 1.15. Let R be a nontrivial commutative, unital ring. Then Rm ∼= Rn ⇒ m = n.

Before proving this, we need one more construction:

Lemma 1.16. Let R be a ring with a two-sided ideal I / R and let M be a left R-module. Then

IM = {
n

∑
i=1

xi ·mi | xi ∈ I, mi ∈ M}

is a sub-R-module of M, and the quotient group M/I := M/IM is an R/I-module.
This construction is what is called functorial: if φ : M→ N is a module homomorphism then

there is an induced homomorphism φ : M/I → N/I such that id = id and φ ◦ ψ = φ ◦ ψ.

Proof. Clearly IM is an abelian subgroup of M. It is also closed under the R-action:

r ·
n

∑
i=1

xi ·mi =
n

∑
i=1

(rxi) ·mi ∈ IM

because I is a left ideal.
We define an R/I-module structure on the abelian group M/I by defining

[r] · [m] = [rm]
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and need to check that this is well-defined, i. e. independent of the choice of representa-
tive of [r]. (That it is independent of the choice of representative of [m] was proven in
Lemma 1.12.) Indeed, given x ∈ I, we verify:

(r + x) ·m = rm + xm ∈ rm + IM.

For the functoriality statement, it suffices to show that φ(IM) ⊆ IN. But this follows
from the R-linearity since

φ(
n

∑
i=1

xi ·mi) =
n

∑
i=1

xi · φ(mi) ∈ IN.

Proof of Theorem 1.15. Let I be any maximal ideal of R. (That every ring has such a
maximal ideal follows Zorn’s Lemma and is a theorem due to Krull (1929) and was a
bonus problem. We will skip its proof here. You have shown it for PIDs at least in an
exercise.) Assume we have an isomorphism φ : Rn → Rm of R-modules. Then φ defines
a homomorphism from (R/I)n to (R/I)m, and φ−1 defines a homomorphism in the
opposite direction. Since φ ◦ φ−1 = φ ◦ φ−1 = id = id and analogously for the converse
composition, we see that φ is in fact an isomorphism of R/I-modules. But R/I is a
field because I was chosen maximal, and (R/I)n and (R/I)m are n- and m-dimensional
vector spaces over it, respectively. Since dimension is well-defined for vector spaces, it
follows that m = n.

1.3 Finitely generated modules

Given a left R-module M and a collection (mi) of elements of M, we say that M is
generated by (mi) if every element of M can be written as an R-linear combination of
the mi, i. .e. for every m ∈ M there are ri ∈ R, all but finitely many zero, such that

m = ∑
i

rimi. (1.17)

Clearly the whole module M is a generating set for M, albeit not a very economical one.
The module M is called finitely generated if it has a finite generating set.

A finitely generated module over a field is thus just a finite-dimensional vector
space. But this does not mean that finitely generated modules behave as nicely as
finite-dimensional vector spaces:

Example 1.18. Submodules of finitely generated modules can fail to be finitely gener-
ated. Take R = k[x1, x2, . . . ] to be the polynomial ring in countably many variables; its
elements are polynomials involving a finite but arbitrary number of the variables xi.
Then R is a finitely generated module over itself (generated by one element, the unity).
However, the ideal I consisting of all nonconstant polynomials and 0 is not finitely
generated. If it were generated by a finite set of nonconstant polynomials p1, . . . , pn,
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then there would have to be some N such that the variable xN does not occur in any of
the pi. But then the nonconstant polynomial xN would not be in the ideal generated by
the pi, either.

Remark 1.19. A ring with the property that submodules of finitely generated modules
are again finitely generated is called noetherian, after Emmy Noether. Although the
theory of noetherian rings is important and extensive, we will not pursue it further here.

Definition. A collection (mi) of element of M is said to be a free set of generators (or
that M is freely generated by the (mi)) if every m can be written in the form (1.17) for
uniquely determined coefficients ri ∈ R.

Lemma 1.20. A module M is freely generated (by some collection of elements (mi)) iff it is free.

Proof. If M is freely generated by (mi)i∈I then the map

M→
⊕
i∈I

R; (m = ∑
i∈I

rimi) 7→ (ri)i∈I ,

is well-defined and an isomorphism. Conversely, the elements δi ∈
⊕

i∈I R defined by
(δi)j = 1 for i = j and (δi)j = 0 for i 6= j form a free set of generators for

⊕
i∈I R.

Remark 1.21. The (infinite) product ∏i∈I R is not free in general. Think about this.

2 Finitely generated modules over principal ideal domains

Recall that a principal ideal domain is an integral domain where every ideal is principal,
i. e. generated by a single element. Examples include fields, Z and k[x] for fields k.

Theorem 2.1. Let R be a principal ideal domain (PID). Then submodules of finitely generated
free R-modules are finitely generated free of smaller or equal rank.

Proof. Let M be freely generated by the elements x1, . . . , xn. We will use induction on n.
The claim is clear for n = 0, so assume it is true for n− 1.

Now let N < M be a submodule, let M′ = 〈x1, . . . , xn−1〉 be the submodule of M
generated by the first n− 1 elements, and consider the module N′ = N ∩M′ < M′. If
N′ = N, then N < M′, and we are done by induction. So let us assume that N′ � N.
Let φ : R → M/(M′ + N) be the R-module map which is defined by φ(r) = [rxn]
and let I = ker(φ) / R. Note that φ is surjective because the canonical projection
M/M′ → M/(M′+ N) is surjective and M/M′ is generated by [xn]. However, φ cannot
be an isomorphism because that would imply that N ⊆ M′ and hence N′ = N, which
we excluded. Thus ker(φ) is an ideal generated by a single nonzero element a ∈ R.
Since φ(a) = 0, axn ∈ M′ + N, thus there is an element w ∈ N whose coefficient for xn
is a. For any element x ∈ N, its coefficient of xn is divisible by a, hence x − cw ∈ N′

for some c ∈ R, hence N = N′ + (w). Since N′ ∩ (w) = (0), we have that the sum
N = N′ ⊕ (w) ∼= N′ ⊕ R is direct. By induction, N′ < M′ is free of rank ≤ n− 1 and we
are done.
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Definition. Given a module M over any commutative ring R, let Mtor < M be the
submodule of those elements m (“torsion elements”) for which there is an r ∈ R− {0}
such that r ·m = 0.

Example 2.2. If R = Z, we have that Ztor = Z and (Z/nZ)tor = Z/nZ.

Theorem 2.3. Let M be a finitely generated module over a PID R. Assume that M is torsion-free,
i. e. Mtor = 0. Then M is free.

Proof. Let M be generated by a finite set x1, . . . , xn. Order these elements in such a way
that x1, . . . , xk are linearly independent, but adding any element xi for i > k makes the
set {x1, . . . , xk, xi} linearly dependent. Denote by N the free submodule of M generated
by x1, . . . , xk.

Thus for i > k, we can find a linear relation

aixi + λ1x1 + · · ·+ λkxk = 0

with ai 6= 0. Let a = ak+1 · · · an. Since R is an integral domain, a 6= 0. The map
φ : M → N defined by φ(x) = ax is well-defined because for any m ∈ M, am ∈ N. It
is also injective because M is torsion free, thus in particular a is not a torsion element.
Thus M is a submodule of the finitely generated module N, hence free.

Theorem 2.4. Let M be a finitely generated module over a PID R. Then M/Mtor is free, and
M ∼= Mtor ⊕M/Mtor.

Proof. We first check that M/Mtor is indeed free; by Theorem 2.3 it suffices to show it is
torsion free. Thus assume [x] ∈ M/Mtor is torsion, i. e. there is an r ∈ R− {0} such that
rx ∈ Mtor. This says that there is an s ∈ R− {0} such that srx = 0. Then (sr)x = 0 and
sr 6= 0, so x ∈ Mtor, so [x] = 0.

For the isomorphism φ : Mtor⊕M/Mtor → M, let {[x1], . . . , [xn]} be a basis of M/Mtor.
(That is, pick some arbitrary representatives xi ∈ M.) Then define φ(m, a1[x1] + · · ·+
an[xn]) = m + a1x1 + · · ·+ anxn. Since the [xi] are linearly independent, this map is well-
defined. An inverse map is given as follows: for m ∈ M, let [m] = a1[x1] + · · ·+ an[xn] ∈
M/Mtor and define

ψ(m) = (m− a1x1 − · · · − anxn, [m]).

Since [m − a1x1 − · · · − anxn] = [m] − a1[x1] − · · · − an[xn] ∈ M/Mtor, the element
m− a1x1 − · · · − anxn is indeed torsion.

We have thus shown that any finitely generated module M over a PID is a direct sum
of a free module (of a well-defined rank) and a torsion module. We will now study the
structure of torsion modules further.

Definition. Let r ∈ R an element of a PID. Denote by Mr the kernel of the multiplication-
by-r map M r·−−→ M. In other words,

Mr = {x ∈ M | r · x = 0}.
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For an irreducible element p ∈ R, and x ∈ M− {0}, the order of x at p is the minimal
n ∈ N0 such that pn · x = 0, or ∞ if such an n does not exist. A torsion R-module M is
called a p-primary torsion module if ordp(m) < ∞ for every element m ∈ M. For any
R-module M, denote by M(p) the submodule of all elements with finite p-order. Thus

M(p) =
⋃

n≥0

Mpn .

Example 2.5. Over R = Z, the modules Z/pnZ are p-primary for any prime number p
and any natural number n. For the module M = Z/12Z, we have M(2) = {0, 3, 6, 9} ∼=
Z/4Z, M(3) = {0, 4, 8} ∼= Z/3Z, and M(p) = 0 for all other primes p.

Lemma 2.6. Let M be a finitely generated torsion module over a PID R. Then

M ∼=
⊕

p
M(p),

where p runs through all indecomposable elements.

Proof. Let a ∈ R be such that aM = 0 (such an a exists because M is torsion and finitely
generated). If a is a prime power, we are done. Otherwise write a = bc with gcd(b, c) = 1
and use the Euclidean algorithm to find elements β, γ ∈ R such that

1 = βb + γc.

Now consider the homomorphism

Mb ⊕Mc
(x,y) 7→x+y−−−−−−→ M.

This homomorphism is injective: suppose x + y = 0. Then bx = 0 and cx = c(−y) =
−cy = 0. Hence

x = 1 · x = (βb + γc)x = 0.

The homomorphism is also surjective: given any z ∈ M.

z = 1 · z = (βb + γc)z = c(γz) + b(βz),

where the first summand is killed by b and the second by c (both because bcM = 0).
Now since a can be uniquely written as a product of powers of indecomposable

elements, we get the stated decomposition by induction.

Theorem 2.7. Let p ∈ R be an irreducible element in a PID and let M be a finitely generated
p-primary torsion module. Then there is a sequence of nonzero integers (k1, . . . , kn), such that

M ∼= R/(pk1)⊕ · · · ⊕ R/(pkn).
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Proof. Let k1 be minimal such that pk1 M = 0 (such a k1 exists because M is finitely
generated) and choose an element x1 ∈ M of order k1. Let N = M/〈x1〉. By induction,
there is an isomorphism

φ : R/(pk2)⊕ · · · ⊕ R/(pkn)→ N;

denote the images of the standard elements ei = (0, . . . , 0, 1, 0, . . . , 0) by xi (i = 2, . . . , n).
We thus know that pki xi = 0 ∈ M/〈x〉. Thus if xi ∈ M is a representative of xi then
pki xi = αix1 for some αi ∈ R. Let si = ordp(αi). Then ord(αix1) = k1 − s and hence
ord(xi) = ki + k1 − s. Since the maximal order of all elements in M is k1, we have
ki − s ≤ 0; in other words, pki |αi. Let βi such that αi = pki βi.

But then pki(xi − βix1) = pki xi − αix1 = 0 and xi − βix1 is also a representative of xi.
Thus we can assume without loss of generality that ordp(xi) = pki in M.

Now consider the map

Φ : R/(pk1)⊕ · · · ⊕ R/(pkn)→ M

which is defined by Φ(ei) = xi. By the surjectivity of φ, Φ is also surjective. For injectivity,
assume that

α1x1 + · · ·+ αnxn = 0.

Then in N, α2x2 + · · ·+ αnxn = 0, hence by injectivity of φ, αi = 0 ∈ R/(pki) for all
i = 2, . . . , n. But then α1x1 = 0 ∈ M, which implies α1 = 0 ∈ R/pk1 .

Remark 2.8. There is also a uniqueness result about this decomposition, which we will
skip here.

Corollary 2.9. Any finitely generated module M over a PID R is isomorphic to a direct sum of
a free module and modules of the form

R/(pi),

where p is an irreducible element and i ∈ N.

3 An application: the Jordan normal form

A field k is called algebraically closed if every nonconstant polynomial in k[x] has a
zero in k. The fundamental theorem of algebra (which we will not prove here) says that C is
algebraically closed.

A field k is thus algebraically closed if and only if the irreducible elements of k[x] are
all linear polynomials of the form x− a for some a ∈ k.

Now let V be a vector space over k of dimension n, and let f : V → V be a vector space
homomorphism. Then we can think of V as a k[X]-module in the following way:

k[X]×V
(a0+a1X+···+akXk ,v) 7→a0v+a1 f (V)+···+ak f (k)(v)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ V, (3.1)

where f (i) denotes the i-fold composition of f with itself. Since V is finite-dimensional
over k, it surely is finitely generated over the bigger ring k[X].
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Lemma 3.2. V is a k[X]-torsion module.

Proof. Let v ∈ V be any nonzero element. Since dim(V) = n, the elements v, f (v), . . . , f (n)(v)
have to be linearly dependent, let’s say

a0v + a1 f (v) + · · ·+ an f (n)(v) = 0.

But this element is exactly (a0 + a1X + · · ·+ anXn) · v.

Corollary 3.3. If k is algebraically closed then V ∼= k[X]/(X− a1)
n1 ⊕ · · · ⊕ k[X]/(X− ak)

nk

for certain elements ai ∈ k and ni ∈ N.

Proof. This follows from the characterization of irreducible elements in k[X] and the
structure theorem for finitely generated abelian groups over the PID k[X].

This says that we can write V as V1 ⊕ · · · ⊕Vk in such a way that f maps Vi to itself
for all i. Let us find out what form the restriction of f to Vi takes.

Lemma 3.4. Let f : V → V be a homomorphism such that V ∼= k[X]/(X − a)n under the
module structure (3.1). Then V has a basis in which the representing matrix of f has the form

a 1 0 · · · 0

0 a 1
...

. . . 0
a 1

0 · · · 0 a

 (3.5)

Proof. Let φ : K[X]/(X− a)n → V be an isomorphism and define

xi = φ((X− a)i) ∈ V.

Then x0, . . . , xn−1 form a basis for V and

f (xi) = X · xi = (X− a) · xi + a · xi = xi+1 + axi.

Corollary 3.6. Let f : kn → kn be a linear map, where k is algebraically closed. Then there is a
basis of kn in which f has a matrix representation consisting of diagonal blocks of the form (3.5)
for various a ∈ k (not necessarily distinct).

4 Exercises

Exercise 1. Let R = Z[ 1
2 (1 +

√
−3)] be the subring of C of elements that can be written

in the form a + b
( 1

2 (1 +
√
−3)

)
for a, b ∈ Z. Show that R is a Euclidean domain.
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Exercise 2. Let A be an abelian group and denote by End(A) the set of all abelian group
homomorphisms A→ A.

1. Show that End(A) with addition and composition forms a ring with unity

2. Show that End(A)× A→ A, ( f , a) 7→ f (a), defines an End(A)-module structure
on A.

Exercise 3. Let R be a commutative ring and M and N be two R-modules. Show
that the set HomR(M, N) of all R-module homomorphisms from M to N has an R-
module structure with addition given by pointwise addition of functions (( f + g)(m) =
f (m) + g(m)).

Exercise 4. Show, using the axioms, that the abelian group Z cannot be given a Z[i]-
module structure. For which primes p does Z/pZ have a Z[i]-module structure?

Exercise 5. For a ring R, consider R as a left module over itself by left multiplication.
Determine all R-module homomorphisms R→ R.

Exercise 6. Let M be a left R-module. The annihilator Ann(M) is the set of all r ∈ R
such that r ·m = 0 for all m ∈ M. Show that Ann(M) is a left ideal in R.

Exercise 7. Show that for any ring R, the set R[x] of polynomials over R forms a free
R-module.

Exercise 8. Let k be a field and I / k[X, Y] denote the ideal (X, Y). Is I a free k[X, Y]-
module?

Exercise 9. Let R be a commutative ring with unit. Assume that R has the property that
every R-module is free. Show that R has to be a field.

Exercise 10. Show that the following two statements are equivalent for a finitely gener-
ated module M over a principal ideal domain R:

1. M is free;

2. Every surjective R-module homomorphism f : N → M has a right inverse g : M→
N.

Exercise 11. Show that Q is a torsion-free Z-module which is not a free Z-module. (This
shows that the finite generation assumption is needed.)

Exercise 12. For the following maps f : Z→ Z⊕ Z, write the quotient (Z⊕ Z)/ im( f )
as a sum of cyclic groups:

1. f (x) = (x, 0)

2. f (x) = (0, 3x)

3. f (x) = (4x, 6x).
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Exercise 13. Up to isomorphism, how many abelian groups of order 12 are there?

Exercise 14. Up to isomorphism, how many abelian groups of order 200 are there?

Exercise 15. Classify all finitely generated modules over the ring Z/8Z.

Exercise 16. Show that any finitely generated module M over a PID R is isomorphic to
a quotient of a finitely generated free module by a finitely generated free submodule.

Exercise 17. Show that the abelian group Q/Z is not a direct sum of cyclic groups.

Exercise 18. Determine the Jordan normal form of the matrix
(

2 1
0 1

)
over C.

Exercise 19. Determine the Jordan normal form of the matrix1 1 0
0 1 0
0 1 1


over C.

Exercise 20. Let k be a field and A an n × n-matrix over k which is idempotent, i. e.
A2 = A. Show that if k = C then A is diagonalizable. Show by example that this does
not hold over arbitrary fields k.
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