SF2729 GROUPS AND RINGS HOMEWORK 10: IRREDUCIBLE POLYNOMIALS, IDEALS, PRIME IDEALS AND MAXIMAL IDEALS

DUE: JANUARY 31, HAND IN WITH ORNELLA GRECO

Problem 1. Write the polynomial $f(x) = 8x^4 - 2x^3 - 15x^2 + 33x - 24 \in \mathbb{Z}[x]$ as a product of irreducible factors. Explain why those factors are irreducible.

Problem 2. Given a homomorphism of commutative rings ϕ : $R \rightarrow S$, show that

- (1) if $I \triangleleft R$ is an ideal then $\phi(I) \triangleleft S$ is an ideal in $\phi(R)$ but not necessarily in all of *S*. (Give a counterexample for the latter statement.)
- (2) if $J \triangleleft S$ is an ideal then $\phi^{-\hat{1}}(J) \triangleleft R$ is an ideal.

Problem 3. The *radical* of a unital, commutative ring *R* is defined to be the intersection of all maximal ideals in *R*. Show that the radical of *R* consists precisely of those $x \in R$ for which 1 - xy is a unit for all $y \in R$.