Suggested exercises, Lecture 2

Galois theory

1. Show that $x^{3}+x^{2}+x+2$ is irreducible in $\mathbf{Q}[X]$ (use the Gauss lemma). Show also that $x^{3}+x^{2}+x+2$ is reducible in $\mathbf{R}[X]$.
2. Let $\alpha \in \mathbf{R}$ be a zero of $x^{3}+x^{2}+x+2$. Consider the $\operatorname{ring} \mathbf{Q}[\alpha] \subset \mathbf{R}$. Show that this ring is a field and express $\left(\alpha^{2}+\alpha+1\right)\left(\left(\alpha^{2}+\alpha\right)\right.$ and $(\alpha-1)^{-1}$ in the form $a \alpha^{2}+b \alpha+c$.
3. Let $K \subset F_{1} \subset E$ and $K \subset F_{2} \subset E$ be a field extensions. Assume that F_{1} and F_{2} are finite over K. Recall that $F_{1} F_{2} \subset E$ is the smallest subfield in E containing both F_{1} and F_{2}. Show that $F_{1} F_{2}$ is finite over K and that $\left[F_{1} F_{2}: K\right] \leq\left[F_{1}: K\right]\left[F_{2}: K\right]$. Furthermore, prove that if $\left[F_{1}: K\right]$ and $\left[F_{2}: K\right]$ are relatively prime numbers, then $\left[F_{1} F_{2}: K\right]=\left[F_{1}: K\right]\left[F_{2}: K\right]$.
