Galois theory

1. Let $E=F(\alpha)$ where α is algebraic over F of odd degree (the irreducible polynomial of α has odd degree). Show that $E=F\left(\alpha^{2}\right)$
2. Let $F \subset E$ be a field extensions and α, β in E be algebraic elements over F. Let $f \in F[X]$ be the irreducible polynomial for α and $g \in F[X]$ be the irreducible polynomial for β. Assume that $\operatorname{deg}(f)$ and $\operatorname{deg}(g)$ are relatively prime. Show that g is irreducible in $F(\alpha)[X]$.
3. Show that $\sqrt{2}+\sqrt{3}$ is algebraic over \mathbf{Q} and find its degree.
4. Describe the splitting fields of the following polynomials in $\mathbf{Q}[X]$:
a. $X^{2}-2$
b. $X^{2}-1$
c. $X^{3}-2$
d. $\left(X^{3}-2\right)\left(X^{2}-2\right)$
e. $X^{2}+X+1$
f. $X^{6}+X^{3}+1$
g. $X^{5}-7$
5. Let $\alpha \in \mathbf{R}$ be a root of $X^{4}-5$ (α is real).
a. Show that $\mathbf{Q} \subset \mathbf{Q}\left(i \alpha^{2}\right)$ is normal.
b. Show the inclusion $\mathbf{Q}\left(i \alpha^{2}\right) \subset \mathbf{Q}(\alpha+i \alpha)$ and that it is a normal extension.
c. Show that $\mathbf{Q} \subset \mathbf{Q}(\alpha+i \alpha)$ is not normal.
