Suggested exercises, Lecture 5\&6
Galois theory

1. Let k be a field and $f=x^{l}+a_{1} x^{l-1}+\cdots+a_{l}$ be a separable polynomial in $k[X]$. Let $k \subset F$ be a splitting field of f. Assume that all the roots of f form a subfield of F. Show that $\operatorname{char}(F)=p>0$ and $f=X^{p^{k}}-X$.
2. Let $\operatorname{char}(F)=p>0$. Show that if $F \subset L$ is a finite field extension such that p does not divide $[L: F]$, then $F \subset L$ is separable.
3. Let $\operatorname{char}(F)=p>0$. Let $a \in F$ be an element such that $X^{p}-a$ has no root in F. Show that, for any positive integer $n, X^{p^{n}}-a$ is irreducible in $F[X]$.
4. Let $\operatorname{char}(F)=p>0$. Let $F \subset K$ be an algebraic extension. Show that $\alpha \in K$ is separable over F if and only if for any positive integer $n, F(\alpha)=F\left(\alpha^{n}\right)$.
5. Let $\omega=e^{2 \pi i / 3} \in \mathbf{C}$. Show that $\mathbf{Q}(\omega, \sqrt{5})=\mathbf{Q}(\omega \sqrt{5})$.
6. Find a primitive element of $\mathbf{Q} \subset \mathbf{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$.
