January 18, 2013

Galois theory

1. A commutative ring $(R, 0, 1, +, \cdot)$ is an abelian group (R, 0, +) together with an associative and commutative multiplication " \cdot " with 1 that is distributive with respect to addition: $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$. For example **Z** (integers), **Z**/n (integers modulo n), **Q** rational numbers, **R** (real numbers), **C** (complex numbers).

Let R be a commutative ring. The symbol R[X] denotes the polynomial ring in one variable with coefficients in R. The symbol R[X, Y] denotes the polynomial ring in two variables with coefficients in R. More generally $R[X_1, \ldots, X_k]$ denotes the polynomial ring in k-variables with coefficients in R.

Let $R \subset S$ be ring and a subring. Let s_1, \ldots, s_k be elements in S. The symbol $R[s_1, \ldots, s_k]$ denotes the smallest subring in S that contains R and all the elements s_1, \ldots, s_k . The subring $R[s_1, \ldots, s_k] \subset S$ consists of sums of elements of the form $rs_1^{l_1}s_2^{l_2}\cdots s_k^{l_k}$.

For example $\mathbf{Q}[\sqrt{5}]$ is the smallest surging of **R** that contains **Q** and $\sqrt{5}$.

An ideal in a ring is an additive subgroup $I \subset R$ such that for any a in I and any r in R, the product ra belongs to I. We say that an ideal I is generated by elements a_1, \ldots, a_k if any element r in I can be written as a combination $r = r_1a_1+r_2a_2+\cdots r_ka_k$ for some elements r_i in R. If I is generated by a_1, \ldots, a_k , then we write $I = (a_1, \ldots, a_k)$. We say that an ideal I is principal if it is generated by only one element, i.e., if there is an element a in I such that all other elements in I can be written as ra for some r in R. The additive subgroup of R that consists of just the zero element 0 is an ideal. Similarly the whole ring R is also an ideal.

The the abelian group of cosets R/I with the multiplication given by (r+I)(s+I) = rs+I and the element 1+I is a commutative ring called the quotient ring. For example \mathbf{Z}/n is the quotient ring of \mathbf{Z} by the ideal (n).

2. Let $R \subset S$ be ring and a subring, $f = a_0 + a_1 X + \cdots + a_n X^n$ a polynomial in R[X]. We say that an element s in S is a zero or a solution of f is $f(s) = a_0 + a_1 s + a_2 s^2 + \cdots + a_n s^n = 0$. For example:

- 1 2x in $\mathbb{Z}[X]$ has no zeros in \mathbb{Z} however it has a solution in rational numbers \mathbb{Q} given by 1/2.
- $2 x^2$ in $\mathbb{Z}[X]$ has no solutions in rational numbers \mathbb{Q} but it has two solutions in real numbers \mathbb{R} given by $\sqrt{2}$ and $-\sqrt{2}$.
- $1 + x^2$ in $\mathbb{Z}[X]$ has no zeros in \mathbb{R} but has two solutions in complex numbers \mathbb{C} given by i and -i.
- $1 + X + X^2 + X^3$ in $\mathbb{Z}[X]$ has only one solution in \mathbb{R} given by -1, since in $\mathbb{Z}[X]$ we have an equality $1 + X + X^2 + X^3 = (1 + X)(1 + X^2)$. It has three different solutions in \mathbb{C} given by -1, i, and -i.
- $1 + X + X^2 + X^3$ in $\mathbb{Z}/2[X]$ has only one solution in $\mathbb{Z}/2$ given by 1. Note that in the ring $\mathbb{Z}/2[X]$, we have en equality $1 + X + X^2 + X^3 = (1 + x)^3$.

3. Let R be a ring. An element r in R is called **invertible** if there is an element sin R such that rs = 1. Such an element sis unique, and we call it the inverse of r and denote it by r^{-1} .

An element r is called **zero divisor** if it is not zero and there is a non-zero s such that rs = 0.

An element r is called **reducible**, if there are two non-invertible elements r_1 and r_2 such that $r = r_1 r_2$.

An element r is called **irreducible**, if it is not reducible, i.e., if r = ab, then either a or b is a unit.

An element r to divide an element s in R (denoted by r|s), if there a in R such that s = ra.

An element r is called **prime** if it is not invertible and whenever it divides a product ab, then it either devices a or it decides b.

4. **Definition.** A commutative ring is called a **domain** it it has no zero divisors. It is called a **field** if all non-zero elements are invertible. It is called a PID (principal ideal domain) if it is a domain and all its ideals are principal.

For example \mathbf{Z} , \mathbf{Q} , \mathbf{R} , \mathbf{C} , $\mathbf{Z}[X]$, $\mathbf{Q}[X]$, $\mathbf{R}[X]$, and $\mathbf{C}[X]$, are domains. The rings \mathbf{Q} , \mathbf{R} , and \mathbf{C} are fields. Any field is a domain, since whenever $a \neq 0$ and ab = 0, then $b = a^{-1}ab = a^{-1}0 = 0$. Moreover any field is a PID. The ring \mathbf{Z} is PID. A ring \mathbf{Z}/n is a domain if and only if n is a prime number. If p is a prime number, then \mathbf{Z}/p is not only a domain but also a field.

5. Proposition. An element r in a commutative ring R is prime if and only if r is not invertible and the quotient ring R/(r) is a domain.

For example let n be an element in \mathbb{Z} . Then n is a prime element in \mathbb{Z} if and only if it is a prime number. Any prime number is an irreducible element in \mathbb{Z} .

6. Proposition. Let R be a domain. Then any prime element is irreducible.

7. Definition. A ring R is called UFD (unique factorization domain) if it is a domain and any element in R can be written as a product of prime elements.

8. Proposition. Let R be UFD. Let p_i and q_j be prime elements in R such that $p_1p_2\cdots p_k = q_1q_2\cdots q_n$. Then k = n and after a permutation, there are invertible elements u_i such that $p_i = u_iq_i$.

Any PID is UFD. For example \mathbf{Z} is a UFD and so is any field. If R is UFD, then so is the polynomial ring R[X].