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Galois theory

1. Theorem.

(1) If R is UFD, then a non zero element in Ris prime if and only if it is irreducible.
(2) If R is UFD, then R[X] is UFD.
(3) If R is PID, then R is UFD.
(4) R[X] is PID if and only if R is a field.

We will only show statement (3). Statement (1) is a consequence of so called Gauss
Lemma. Statement (2) is a good exercise.

Assume first that R is a field. Recall that under this assumption for any f in R[X]
and any nonzero g in R[X], f can be written in a unique watt as f = hg + r where
deg(r) < deg(g). Let Ibe an ideal in R[X]. If I is the zero ideal then I = (0) is
generated by one element. If I is non-zero, let g in I be a non-zero element with the
smallest degree. For any f in I, we can then write f = hg + r. Since both f and g are
in I, then so is r = f −hg. Since deg(r) < deg(g), we then must have r = 0 and hence
g|f . This means that I = (g) and so Iis singly generated.

Assume that R[X] is a PID. Let r in R be non-zero. We need to show that r is
invertible, i.e., the ideal in R generated by r is R. Let s be in R. Note that the ideal
(s) in R[X] generated by s consists of all the polynomials whose coefficients are divisible
by s. Consider then the set I which consists of all polynomials a0 + a1X + · · · akXk

such that r divides a0. This is an ideal. And since R[X] is a PID, there is f such that
I = (f). As r is in I, then f |r. It follows then that the degree of f is 0 and hence
it is an element of R. Thus r|f and so I = (f) = (r). However the ideal (r) consists
only of polynomials whose all coefficients are divisible by r. It follows that r devices
all elements in R, i.e., r is invertible.

2. Proposition. Let R be a PID and r be a prime element in R which is non-zero.
Then R/(r) is a field.

Let s + (r) be a non-zero element in R/(r). This means that s does note belong to
(r), i.e., r does not divide s. Consider the ideal (r, s) in R. Since R is PID, there is t
such that (r, s) = (t). In particular t|s and t|r. We can then write r = tr′. Note that r
can not divide t since then r would divide s as t does. Hence since r is prime, r devices
r′. We thus have an equality r = trr′′. As R is a domain we then get 1 = tr′′. The
element t is then invertible and so (r, s) = (t) = R. Ion particular there are elements
a and b in R so that ar + bs = 1. This means that b + (r) is the inverse of s + (r) in
R/(r) and so this quaint ring is a field

3. Here we will recall the construction of the field of fractions of a domain. Let R be a
domain. Consider the set of pairs (a, b) of elements of R with b 6= 0. We say that two
such pairs (a, b) and (c, d) are equivalent if ad = bc. This is an equivalence relation on
the set of such pairs. An equivalence class of a pair (a, b) is denoted by a

b
and called

a fraction. Thus a
b

= c
d

if ad = bc. The set of equivalence classes of this relation is
1



2

denoted by K. This set together with the elements 0
1

as the zero, 1
1

as the one, and

operations a
b

+ c
d

= ad+bc
bd

and a
b
c
d

= ac
bd

is a field, called the field of fractions of R. We
will identify R with a subring of K given by the fractions r

1
.

4. Eisenstein’s criterion. Let R be a UFD and K its ring of fractions. Consider a
polynomial f = a0 + a1X + · · ·+ anX

n in R[X] ⊂ K[X]. Assume that there is a prime
element p in R such that p 6 |an, p|ai for 0 ≤ i < n and p2 6 |a0. Then f is irreducible in
K[X].

5. Let F be a field. Then F [X] is a PID and hence UFD. It follows that a non-zero
prime polynomial in F [X] is prime if and only if it is irreducible. Thus we will use in
this case the words prime polynomial and irreducible polynomial interchangeably.

Let R be a UFD and K its ring of fractions. Consider a polynomial f = a0 + a1X +
· · · + anX

n in R[X] ⊂ K[X]. Assume that there is a prime element p in R such that
p 6 |an, p|ai for 0 ≤ i < n and p2 6 |a0. Then f is irreducible in K[X].


