January 25, 2013
Galois theory

1. Theorem.

(1) If R is UFD, then a non zero element in Ris prime if and only if it is irreducible.
(2) If R is UFD, then $R[X]$ is UFD.
(3) If R is PID, then R is UFD.
(4) $R[X]$ is PID if and only if R is a field.

We will only show statement (3). Statement (1) is a consequence of so called Gauss Lemma. Statement (2) is a good exercise.

Assume first that R is a field. Recall that under this assumption for any f in $R[X]$ and any nonzero g in $R[X], f$ can be written in a unique watt as $f=h g+r$ where $\operatorname{deg}(r)<\operatorname{deg}(g)$. Let I be an ideal in $R[X]$. If I is the zero ideal then $I=(0)$ is generated by one element. If I is non-zero, let g in I be a non-zero element with the smallest degree. For any f in I, we can then write $f=h g+r$. Since both f and g are in I, then so is $r=f-h g$. Since $\operatorname{deg}(r)<\operatorname{deg}(g)$, we then must have $r=0$ and hence $g \mid f$. This means that $I=(g)$ and so I is singly generated.

Assume that $R[X]$ is a PID. Let r in R be non-zero. We need to show that r is invertible, i.e., the ideal in R generated by r is R. Let s be in R. Note that the ideal (s) in $R[X]$ generated by s consists of all the polynomials whose coefficients are divisible by s. Consider then the set I which consists of all polynomials $a_{0}+a_{1} X+\cdots a_{k} X^{k}$ such that r divides a_{0}. This is an ideal. And since $R[X]$ is a PID, there is f such that $I=(f)$. As r is in I, then $f \mid r$. It follows then that the degree of f is 0 and hence it is an element of R. Thus $r \mid f$ and so $I=(f)=(r)$. However the ideal (r) consists only of polynomials whose all coefficients are divisible by r. It follows that r devices all elements in R, i.e., r is invertible.
2. Proposition. Let R be a PID and r be a prime element in R which is non-zero. Then $R /(r)$ is a field.

Let $s+(r)$ be a non-zero element in $R /(r)$. This means that s does note belong to (r), i.e., r does not divide s. Consider the ideal (r, s) in R. Since R is PID, there is t such that $(r, s)=(t)$. In particular $t \mid s$ and $t \mid r$. We can then write $r=t r^{\prime}$. Note that r can not divide t since then r would divide s as t does. Hence since r is prime, r devices r^{\prime}. We thus have an equality $r=t r r^{\prime \prime}$. As R is a domain we then get $1=t r^{\prime \prime}$. The element t is then invertible and so $(r, s)=(t)=R$. Ion particular there are elements a and b in R so that $a r+b s=1$. This means that $b+(r)$ is the inverse of $s+(r)$ in $R /(r)$ and so this quaint ring is a field
3. Here we will recall the construction of the field of fractions of a domain. Let R be a domain. Consider the set of pairs (a, b) of elements of R with $b \neq 0$. We say that two such pairs (a, b) and (c, d) are equivalent if $a d=b c$. This is an equivalence relation on the set of such pairs. An equivalence class of a pair (a, b) is denoted by $\frac{a}{b}$ and called a fraction. Thus $\frac{a}{b}=\frac{c}{d}$ if $a d=b c$. The set of equivalence classes of this relation is
denoted by K. This set together with the elements $\frac{0}{1}$ as the zero, $\frac{1}{1}$ as the one, and operations $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$ and $\frac{a}{b} \frac{c}{d}=\frac{a c}{b d}$ is a field, called the field of fractions of R. We will identify R with a subring of K given by the fractions $\frac{r}{1}$.
4. Eisenstein's criterion. Let R be a UFD and K its ring of fractions. Consider a polynomial $f=a_{0}+a_{1} X+\cdots+a_{n} X^{n}$ in $R[X] \subset K[X]$. Assume that there is a prime element p in R such that $p \not\left\langle a_{n}, p\right| a_{i}$ for $0 \leq i<n$ and $p^{2} \not \backslash a_{0}$. Then f is irreducible in $K[X]$.
5. Let F be a field. Then $F[X]$ is a PID and hence UFD. It follows that a non-zero prime polynomial in $F[X]$ is prime if and only if it is irreducible. Thus we will use in this case the words prime polynomial and irreducible polynomial interchangeably.

Let R be a UFD and K its ring of fractions. Consider a polynomial $f=a_{0}+a_{1} X+$ $\cdots+a_{n} X^{n}$ in $R[X] \subset K[X]$. Assume that there is a prime element p in R such that $p \nmid a_{n}, p \mid a_{i}$ for $0 \leq i<n$ and $p^{2} \not \backslash a_{0}$. Then f is irreducible in $K[X]$.

