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1 Commutative rings

Rings will be assumed commutative with identity.
Our primary examples of commutative rings are

• The integers.

• The integers modulo some ideal.

• The rational numbers.

• The real numbers.

• The complex numbers.

• Polynomial rings R[x1, . . . , xn] where R is a commutative ring.

Suppose that R ⊂ S is a subring, and let s1, . . . , sn be elements of S. We
denote by

R[s1, . . . , sn]
the smallest subring of S containing the subring R and the elements s1, . . . , sn.
R ↪→ R[s1, . . . , sn] ↪→ S

Every element in R[s1, . . . , sn] can be written as a sum of elements of the
form

rsl1
1 · · · sln

n

where li ≥ 0 are integers and r is an element in R.
An ideal I in a ring R is an additive subgroup I of R such that for any a ∈ I

and r ∈ R we have
ra ∈ I.

If I is an ideal in R, we say that I is generated by a1, . . . , an if

• a1, . . . , an are all in I

• Any a ∈ I can be written as

a = ra1 · · · an

for some r ∈ R.

In this case, we write
I = (a1, . . . , an).

If an ideal I is generated by one element, we say that I is principal.
If I is an ideal in R, we form the abelian group of left cosets R/I. It is a

ring with multiplication given by

(r + I)(s + I) = rs + I.

This construction is called a quotient ring.
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2 Solutions of polynomials

Let R ⊂ S be a subring. Elements f ∈ R[x] are of the form

f = a0 + a1x + · · ·+ anxn.

A solution/zero of f in S is an element s ∈ S such that

f(s) = a0 + a1s + a2s
2 + · · ·+ ansn.

Examples

• 1− 2x in Z[x] has no solutions in Z. Embedding Z in Q, we see that 1
2 is

a solution in Q.

• 2− x2 in Z[x] has no solutions in Z or Q. Embedding Z in R, we see that√
2 is a solution in R.

• 1 + x2 in Z[x] has no solutions in R, but two solutions in C (namely ±i).

• 1 + x + x2 + x3 in Z[x] can be factorized as (1 + x)(1 + x2), and has one
solution in R (-1), but three solutions in C (-1, ±i).

• 1 + x + x2 + x3 in Z/2[x] can be factorized as (1 + x)3, and has only one
solution (-1 = 1).

Let R be a ring, and r an element of R.

Definition 1. r is invertible if there is an s such that

rs = 1.

If r is invertible, then s is unique and we denote it by r−1.

Examples In Z, only ±1 are invertible. In Q, all numbers are invertible.

Definition 2. r is a zero divisor if r 6= 0 and there is an s 6= 0 such that

rs = 0.

In Z there are no zero-divisors.

Definition 3. r is reducible if there are non-invertible a, b in R such that

r = ab.

Definition 4. r is irreducible if it is not reducible; that is, if r = ab, then either
a is invertible, or b is.

Definition 5. r divides s ∈ R (written r|s??) if

s = ra

for some a ∈ R.

Definition 6. r is prime if r is not invertible, and

r|ab??⇒ r|a or r|b.
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Definition 7. • R is called a domain if it has no zero divisors.

• R is called a field if all non-zero elements are invertible. (A field has no
zero divisors. Prove this!)

• R is a PID (Principal Ideal Domain) if it is a domain and all ideals are
principal (generated by one element).

Examples of domains

Z, Z[x], Q, R, C, Q[x], . . .

Examples of fields
Q, R, C, Z/p

where p is prime.
Examples of PID’s

• If k a field, and I is an ideal in k, then either I = (0) or I = (1). (Prove
this!)

• Z is a PID, since Z is cyclic as a group.

• k a field, k[x] is a PID. Let I be a non-zero ideal in k[x]. Choose a non-zero
f in I of minimal degree. For any g ∈ I, we have

g = fh + r

where deg(r) < deg(f). This means that r = g − fh ∈ I, so r = 0 by our
assumption that f is of minimal degree in I. This essentially hinges on
the fact that k is a field. Why? Well, write g = b0 + b1x + · · ·+ bmxm and
f = a0 + a1x + · · ·+ anxn (n ≤ m, otherwise we are done). To lower the
degree of g, subtract bm

an
xm−nf . This presupposes that an is invertible.

Homework?? Show why Z[x] is not a PID.

Proposition 1. Let R be a domain, then any non-zero prime element of R is
irreducible.

Proof. Suppose that r is prime, and that r = ab (r|ab??). Then WLOG a = rs,
that is

r = rsb⇒ r(1− sb) = 0.

Since R is a domain, 1−sb = 0, so b is invertible. By symmetry we are done.

It is however not true in general that irreducible elements are prime (even if
R is a domain). (Construct a counter-example!)

Consider Z[
√

5] (which is not a UFD), and the factorizations

(1−
√

5)(1 +
√

5) = −4 = (−2)(2).

The elements are irreducible, but not prime. (Show this!)
In Z, being prime is equivalent to being irreducible. This actually holds true

in all UFD’s.

Proposition 2. An element r in R is prime if and only if R/(r) is a domain.
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Proof. Assume that r is prime. [a], [b] ∈ R/(r). If [a] · [b] = 0, then ab ∈ (r), i.e.
r|ab??. Now r|a or r|b, so either [a] = 0 or [b] = 0.

To show the converse, suppose that R/(r) is a domain. r|ab means that
[a][b] = 0, so [a] = 0 or [b] = 0. Hence r|a or r|b, that is r is prime.

Definition 8. R is a UFD if it is a domain and every element in R can be
written as a product of primes.

Proposition 3. Let R be a UFD. Then

• Irreducible elements are prime.

• Any two factorizations into primes are equivalent up to invertible elements.
That is, if for some primes pi, qi we have

p1 · · · pm = q1 · · · qn,

then m = n, and after an appropriate permutation we get

pi = aiqi

for all 1 ≤ i ≤ n and some invertible elements ai.
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