January 21, 2013

1 Commutative rings

Rings will be assumed commutative with identity.

- Our primary examples of commutative rings are
 - The integers.
 - The integers modulo some ideal.
 - The rational numbers.
 - The real numbers.
 - The complex numbers.
 - Polynomial rings $R[x_1, \ldots, x_n]$ where R is a commutative ring.

Suppose that $R \subset S$ is a subring, and let s_1, \ldots, s_n be elements of S. We denote by

$$R[s_1,\ldots,s_n]$$

the smallest subring of S containing the subring R and the elements s_1, \ldots, s_n . $R \hookrightarrow R[s_1, \ldots, s_n] \hookrightarrow S$

Every element in $R[s_1, \ldots, s_n]$ can be written as a sum of elements of the form

$$rs_1^{l_1}\cdots s_n^{l_n}$$

where $l_i \geq 0$ are integers and r is an element in R.

An ideal I in a ring R is an additive subgroup I of R such that for any $a \in I$ and $r \in R$ we have

$$ra \in I$$
.

If I is an ideal in R, we say that I is generated by a_1, \ldots, a_n if

- a_1, \ldots, a_n are all in I
- Any $a \in I$ can be written as

$$a = ra_1 \cdots a_n$$

for some $r \in R$.

In this case, we write

$$I = (a_1, \ldots, a_n).$$

If an ideal I is generated by one element, we say that I is principal.

If I is an ideal in R, we form the abelian group of left cosets R/I. It is a ring with multiplication given by

$$(r+I)(s+I) = rs + I.$$

This construction is called a quotient ring.

2 Solutions of polynomials

Let $R \subset S$ be a subring. Elements $f \in R[x]$ are of the form

$$f = a_0 + a_1 x + \dots + a_n x^n$$

A solution/zero of f in S is an element $s \in S$ such that

$$f(s) = a_0 + a_1 s + a_2 s^2 + \dots + a_n s^n.$$

Examples

- 1 2x in $\mathbb{Z}[x]$ has no solutions in \mathbb{Z} . Embedding \mathbb{Z} in \mathbb{Q} , we see that $\frac{1}{2}$ is a solution in \mathbb{Q} .
- $2 x^2$ in $\mathbb{Z}[x]$ has no solutions in \mathbb{Z} or \mathbb{Q} . Embedding \mathbb{Z} in \mathbb{R} , we see that $\sqrt{2}$ is a solution in \mathbb{R} .
- $1 + x^2$ in $\mathbb{Z}[x]$ has no solutions in \mathbb{R} , but two solutions in \mathbb{C} (namely $\pm i$).
- $1 + x + x^2 + x^3$ in $\mathbb{Z}[x]$ can be factorized as $(1 + x)(1 + x^2)$, and has one solution in \mathbb{R} (-1), but three solutions in \mathbb{C} (-1, $\pm i$).
- $1 + x + x^2 + x^3$ in $\mathbb{Z}/2[x]$ can be factorized as $(1 + x)^3$, and has only one solution (-1 = 1).

Let R be a ring, and r an element of R.

Definition 1. r is invertible if there is an s such that

rs = 1.

If r is invertible, then s is unique and we denote it by r^{-1} .

Examples In \mathbb{Z} , only ± 1 are invertible. In \mathbb{Q} , all numbers are invertible.

Definition 2. *r* is a zero divisor if $r \neq 0$ and there is an $s \neq 0$ such that

rs = 0.

In \mathbb{Z} there are no zero-divisors.

Definition 3. r is reducible if there are non-invertible a, b in R such that

$$r = ab.$$

Definition 4. r is irreducible if it is not reducible; that is, if r = ab, then either a is invertible, or b is.

Definition 5. r divides $s \in R$ (written r|s??) if

s = ra

for some $a \in R$.

Definition 6. r is prime if r is not invertible, and

 $r|ab?? \Rightarrow r|a \text{ or } r|b.$

Definition 7. • *R* is called a domain if it has no zero divisors.

- R is called a field if all non-zero elements are invertible. (A field has no zero divisors. Prove this!)
- *R* is a PID (Principal Ideal Domain) if it is a domain and all ideals are principal (generated by one element).

Examples of domains

$$\mathbb{Z}, \mathbb{Z}[x], \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}[x], \dots$$

Examples of fields

$$\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p$$

where p is prime.

Examples of PID's

- If k a field, and I is an ideal in k, then either I = (0) or I = (1). (Prove this!)
- \mathbb{Z} is a PID, since \mathbb{Z} is cyclic as a group.
- k a field, k[x] is a PID. Let I be a non-zero ideal in k[x]. Choose a non-zero f in I of minimal degree. For any $g \in I$, we have

$$g = fh + r$$

where deg(r) < deg(f). This means that $r = g - fh \in I$, so r = 0 by our assumption that f is of minimal degree in I. This essentially hinges on the fact that k is a field. Why? Well, write $g = b_0 + b_1 x + \dots + b_m x^m$ and $f = a_0 + a_1 x + \dots + a_n x^n$ $(n \leq m, \text{ otherwise we are done})$. To lower the degree of g, subtract $\frac{b_m}{a_n} x^{m-n} f$. This presupposes that a_n is invertible.

Homework?? Show why $\mathbb{Z}[x]$ is not a PID.

Proposition 1. Let R be a domain, then any non-zero prime element of R is irreducible.

Proof. Suppose that r is prime, and that r = ab (r|ab??). Then WLOG a = rs, that is

$$r = rsb \Rightarrow r(1 - sb) = 0.$$

Since R is a domain, 1-sb = 0, so b is invertible. By symmetry we are done. \Box

It is however not true in general that irreducible elements are prime (even if R is a domain). (Construct a counter-example!)

Consider $\mathbb{Z}[\sqrt{5}]$ (which is not a UFD), and the factorizations

$$(1 - \sqrt{5})(1 + \sqrt{5}) = -4 = (-2)(2).$$

The elements are irreducible, but not prime. (Show this!)

In \mathbb{Z} , being prime is equivalent to being irreducible. This actually holds true in all UFD's.

Proposition 2. An element r in R is prime if and only if R/(r) is a domain.

Proof. Assume that r is prime. $[a], [b] \in R/(r)$. If $[a] \cdot [b] = 0$, then $ab \in (r)$, i.e. r|ab??. Now r|a or r|b, so either [a] = 0 or [b] = 0.

To show the converse, suppose that R/(r) is a domain. r|ab means that [a][b] = 0, so [a] = 0 or [b] = 0. Hence r|a or r|b, that is r is prime. \Box

Definition 8. R is a UFD if it is a domain and every element in R can be written as a product of primes.

Proposition 3. Let R be a UFD. Then

- Irreducible elements are prime.
- Any two factorizations into primes are equivalent up to invertible elements. That is, if for some primes p_i, q_i we have

$$p_1 \cdots p_m = q_1 \cdots q_n,$$

then m = n, and after an appropriate permutation we get

 $p_i = a_i q_i$

for all $1 \leq i \leq n$ and some invertible elements a_i .