January 21, 2013

1 Commutative rings

Rings will be assumed commutative with identity.
Our primary examples of commutative rings are

- The integers.
- The integers modulo some ideal.
- The rational numbers.
- The real numbers.
- The complex numbers.
- Polynomial rings $R\left[x_{1}, \ldots, x_{n}\right]$ where R is a commutative ring.

Suppose that $R \subset S$ is a subring, and let s_{1}, \ldots, s_{n} be elements of S. We denote by

$$
R\left[s_{1}, \ldots, s_{n}\right]
$$

the smallest subring of S containing the subring R and the elements s_{1}, \ldots, s_{n}. $R \hookrightarrow R\left[s_{1}, \ldots, s_{n}\right] \hookrightarrow S$

Every element in $R\left[s_{1}, \ldots, s_{n}\right]$ can be written as a sum of elements of the form

$$
r s_{1}^{l_{1}} \cdots s_{n}^{l_{n}}
$$

where $l_{i} \geq 0$ are integers and r is an element in R.
An ideal I in a ring R is an additive subgroup I of R such that for any $a \in I$ and $r \in R$ we have

$$
r a \in I
$$

If I is an ideal in R, we say that I is generated by a_{1}, \ldots, a_{n} if

- a_{1}, \ldots, a_{n} are all in I
- Any $a \in I$ can be written as

$$
a=r a_{1} \cdots a_{n}
$$

for some $r \in R$.
In this case, we write

$$
I=\left(a_{1}, \ldots, a_{n}\right)
$$

If an ideal I is generated by one element, we say that I is principal.
If I is an ideal in R, we form the abelian group of left cosets R / I. It is a ring with multiplication given by

$$
(r+I)(s+I)=r s+I
$$

This construction is called a quotient ring.

2 Solutions of polynomials

Let $R \subset S$ be a subring. Elements $f \in R[x]$ are of the form

$$
f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} .
$$

A solution/zero of f in S is an element $s \in S$ such that

$$
f(s)=a_{0}+a_{1} s+a_{2} s^{2}+\cdots+a_{n} s^{n} .
$$

Examples

- $1-2 x$ in $\mathbb{Z}[x]$ has no solutions in \mathbb{Z}. Embedding \mathbb{Z} in \mathbb{Q}, we see that $\frac{1}{2}$ is a solution in \mathbb{Q}.
- $2-x^{2}$ in $\mathbb{Z}[x]$ has no solutions in \mathbb{Z} or \mathbb{Q}. Embedding \mathbb{Z} in \mathbb{R}, we see that $\sqrt{2}$ is a solution in \mathbb{R}.
- $1+x^{2}$ in $\mathbb{Z}[x]$ has no solutions in \mathbb{R}, but two solutions in \mathbb{C} (namely $\pm i$).
- $1+x+x^{2}+x^{3}$ in $\mathbb{Z}[x]$ can be factorized as $(1+x)\left(1+x^{2}\right)$, and has one solution in $\mathbb{R}(-1)$, but three solutions in $\mathbb{C}(-1, \pm i)$.
- $1+x+x^{2}+x^{3}$ in $\mathbb{Z} / 2[x]$ can be factorized as $(1+x)^{3}$, and has only one solution $(-1=1)$.

Let R be a ring, and r an element of R.
Definition 1. r is invertible if there is an s such that

$$
r s=1
$$

If r is invertible, then s is unique and we denote it by r^{-1}.
Examples In \mathbb{Z}, only ± 1 are invertible. In \mathbb{Q}, all numbers are invertible.
Definition 2. r is a zero divisor if $r \neq 0$ and there is an $s \neq 0$ such that

$$
r s=0
$$

In \mathbb{Z} there are no zero-divisors.
Definition 3. r is reducible if there are non-invertible a, b in R such that

$$
r=a b
$$

Definition 4. r is irreducible if it is not reducible; that is, if $r=a b$, then either a is invertible, or b is.

Definition 5. r divides $s \in R$ (written $r \mid s$??) if

$$
s=r a
$$

for some $a \in R$.
Definition 6. r is prime if r is not invertible, and

$$
r|a b ? ? \Rightarrow r| a \text { or } r \mid b .
$$

Definition 7. - R is called a domain if it has no zero divisors.

- R is called a field if all non-zero elements are invertible. (A field has no zero divisors. Prove this!)
- R is a PID (Principal Ideal Domain) if it is a domain and all ideals are principal (generated by one element).

Examples of domains

$$
\mathbb{Z}, \mathbb{Z}[x], \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}[x], \ldots
$$

Examples of fields

$$
\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / p
$$

where p is prime.
Examples of PID's

- If k a field, and I is an ideal in k, then either $I=(0)$ or $I=(1)$. (Prove this!)
- \mathbb{Z} is a PID, since \mathbb{Z} is cyclic as a group.
- k a field, $k[x]$ is a PID. Let I be a non-zero ideal in $k[x]$. Choose a non-zero f in I of minimal degree. For any $g \in I$, we have

$$
g=f h+r
$$

where $\operatorname{deg}(r)<\operatorname{deg}(f)$. This means that $r=g-f h \in I$, so $r=0$ by our assumption that f is of minimal degree in I. This essentially hinges on the fact that k is a field. Why? Well, write $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ and $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ ($n \leq m$, otherwise we are done). To lower the degree of g, subtract $\frac{b_{m}}{a_{n}} x^{m-n} f$. This presupposes that a_{n} is invertible.

Homework?? Show why $\mathbb{Z}[x]$ is not a PID.
Proposition 1. Let R be a domain, then any non-zero prime element of R is irreducible.

Proof. Suppose that r is prime, and that $r=a b(r \mid a b ? ?)$. Then WLOG $a=r s$, that is

$$
r=r s b \Rightarrow r(1-s b)=0 .
$$

Since R is a domain, $1-s b=0$, so b is invertible. By symmetry we are done.
It is however not true in general that irreducible elements are prime (even if R is a domain). (Construct a counter-example!)

Consider $\mathbb{Z}[\sqrt{5}]$ (which is not a UFD), and the factorizations

$$
(1-\sqrt{5})(1+\sqrt{5})=-4=(-2)(2)
$$

The elements are irreducible, but not prime. (Show this!)
In \mathbb{Z}, being prime is equivalent to being irreducible. This actually holds true in all UFD's.

Proposition 2. An element r in R is prime if and only if $R /(r)$ is a domain.

Proof. Assume that r is prime. $[a],[b] \in R /(r)$. If $[a] \cdot[b]=0$, then $a b \in(r)$, i.e. $r \mid a b ? ?$. Now $r \mid a$ or $r \mid b$, so either $[a]=0$ or $[b]=0$.

To show the converse, suppose that $R /(r)$ is a domain. $r \mid a b$ means that $[a][b]=0$, so $[a]=0$ or $[b]=0$. Hence $r \mid a$ or $r \mid b$, that is r is prime.

Definition 8. R is a UFD if it is a domain and every element in R can be written as a product of primes.

Proposition 3. Let R be a UFD. Then

- Irreducible elements are prime.
- Any two factorizations into primes are equivalent up to invertible elements. That is, if for some primes p_{i}, q_{i} we have

$$
p_{1} \cdots p_{m}=q_{1} \cdots q_{n}
$$

then $m=n$, and after an appropriate permutation we get

$$
p_{i}=a_{i} q_{i}
$$

for all $1 \leq i \leq n$ and some invertible elements a_{i}.

