Galois theory, lecture 2
lecture notes

28 januari 2013

Examination

The course webpage is www.math.kth.se/math/GRU/2012.2013/SF2732/ The examination con-
sists of two homework problems and an exam. The homework problem are worth 12 points,
... The book is Algebra by Serge Lang.

1 Summary of last lecture

Recall that r is irreducible if r = ab = a is a unit or b is a unit.

Theorem 1. e If R is an UFD, then a non zero element r € R is prime iff r is irreducible.
e If R is a UFD, then so is R[x]. (This can be proved by Gauss lemma.)
e IfR is a PID, then R is a UFD.

e Rx] is PID iff R is a field. (R - field = R[z] PID is easy, the proof Rx] - PID — R -
field is below:

Assume R[z] is PID, let 0 # r € R. We will show that r is invertible.’

To give a concrete example, why is Z[X] not a PID? Easy - just find an ideal
minimally generated by at least two elements. After some experimentation, the
simplest I could come up with was (2, X).

For a general PID, we are to prove that every nonzero r with degr = 0 s tnver-
tible. We will show that if r is not invertible, we would get an ideal minimlly ge-
nerated by two elemnts. Let r be a nonzero prime <= irreducible element of de-
gree 0 (it is enough to prove that the primes are invertible, then everything else
is invertible to). Then consider the ideal (r, X) = {ap+ a1 X ... +ap,Xn : rlag}.
We have (r) C (r, X). By assumption, R|x] is a PID, so there is a € R[x]| with
(a) = (r, X). But then dega = 0, and a|r. It follows that a and r are associates,
so (r) = (r,X). The polynomial r + X € (r,X), sor+ X = (a+ fx)r and 8
has to be the inverse of r. This proves that every prime element r is invertible,
and since every element is a product of primes, every element is invertible.

1The red boxes are my own notes from after the lecture that explains something I havn’t seen earlier, or had
trouble understanding, or trouble to follow or something that the lecturer skipped during the lecture
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Theorem 2. If F' is a field, then F[x] is PID, F[X,Y] is UFD.
F[z] is PID:
Let I C F[X] be an ideal, let p(x) be a polynomial of minimal degree in I.
Then by the division algorithm, every polynomial s(x) in I can be written as
s=pq+r withr =0 or degr < degp. But thenr € I sor =0 and I = (p).

The second claim follows from R - UDF = R[X] - UDF and from the fact
that F[X] is UFD.

2 Lecture 2

Proposition 1. Let r € R be a prime element (equivalently R /(r) is a domain or rla-b=>r|a
orrlb.) Then R /(r) is a field.

Bevis. Take S+ (r) € R /(r) # 0 (that is r { s) Consider the ideal (r,s) = (t) C R. Then t|r
and t|s. From this we get r = ¢ - w. We know r { ¢, so r|w. We get r|lw = r = tvr —>. We want
to find ar + bs =1, then (b+ (r))(s + (r)) = 1+ (r). O

Take Z and a prime p € Z Then the above theorem tells us that Z / (p) is a field.

Another example is hen F is a field, f € F[X] is an irreducible element. Then F[X] / (f) is a
field.

Note: The whole course is about constructing new fields from other fields. One way to do this
is to quotient a PID by irreducible element. To be able to do this, we need methods to determine
when an element of a ring is irreducible. This is a hard problem. Consider this example:

Example 1. Is the polynomial X* + 1 irredubcible in Q[X], R[X],C[X], (Z /(2)) [X]?
o In Q[X], X?+1 is irreducible.
o In R[X], it is irreducible.
o InClX], 2> +1=(z —i)(x +1)
e in(Z/2))[a],2*+1=(z+1)>

Let R be a domain, recall that its field of fractions can be constructed from all pairs (r,72) € R?
with ro # 0. On these pairs, we define an equivalence ralation,

(a,b) ~ (¢,d) if ad = be
We denote the equivalence of (a,b) by #. The definition of ~ tells us that
% = g if ad = be
so these 'fractions’ behave just as usual fractions in Q or R. These fractions form a ring under

addition
ad + be

¢
d bd
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and multiplication
c ac

d  bd

The class of (0,1), the fraction %, acts as 0, and % has the role of 1.
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To verify that the construction works, we have to check that if s = ¢, and s’ = ¢, then
s =5 = s+t =s"+t. This transaletes into

ad+bc a'd+b'c

’ I
ab +a'b=0= bl v

and this can be proven by doing some algebraic calculations. This construction is called the field
of fractions of R.

Eisentnein’s criterion

Let R be a UFD and K its field of fractions. Let f = ap + a1z + ... + apz™ € Rlz] C K[x]
(coefficients in R). We want to know when f is irreducible in K{x].

Theorem 3. Assume that there is a prime p # 0 € R such that p { ay,pla;0 < i < n,p* | ao.
Then f is irreducible in K|[z].

First, an example:

Example 2. Is the polynomial g = z* + 23 + 2* + = + 1 € Q[x] drreducible?

By Eisensteins criterion, f = x* + 523 4+ 1022 4+ 10z + 5 is irreducible. But g(x + 1) = f(x), so
g is irreducible.

Homomorphisms of polynomials rings

Theorem 4. Let f : R — S be a ring homomorphism. (By ring homomorphism we mean a
map that maps 0 — 0, 1 — 1, preserves addition and multiplication.) Then for every s € S,
there is a unique ring homomorphism f : Rlx] — S such that f(r) = f(r) and f(z) = s.
Field extensions

We will study the case F' — E or (denoted E vertical line down to F)

Let f C F,ay...an € E. Then construct F — Flas,...,a,] — F(ag,...,a,) C E. By

Flaq,...,a,], we mean the smallest ring containing F' and «q,...,q,. By F(ag,...,a,), we
mean the smallest field that contains F, ay,...ay,. Flay,. .., ay] contains all linear combinations
of monomials of* ... ak». F(ay,... a,) also contains all inverses of the a;:s.

Definition 1. F' C E is finitely generated if there are o, . .. o, in E such that E = F(ay, ..., ap)

A natural question we might ask is if a composition of finite generated extensions is finitely
generated. This is a rather hard question.



Definition 2. F' C E is finite extension if, as a vector space over F, E is finite-dimensional.
In this case, we denote dimp(E) = [E : F].

The standard questions here is again, if F is a finite extension of F’ and K is a finite extension
of E, is K a finite extension of E? and if it is, what is [K : F]?. This is a relatively easy
question to answer.

assume eq,...e, is a base of ¥ over F and kq,...,k,, is a finite base of K over E. We claim
linear combination of the {e; - k;} and that the {e; - k;} are linearly independent. We write
k= aiki +...amky, with a; € E. Now we write each a; = (a;1€1 + ... + ainen), expand and
are done.

But are the {e;k;} linearly independent? Assume there is a sum } _, ; a; je;k; = 0 with coefficients
aij € F. We write the sum as >, k;(3; aije;) = 0. The k; are linearly independent over E,
so all the coefficients Zl a; je; are 0. But the e; are linearly independent over F', so all a;; =0
which is what we wanted.

We proved that if F C E C K, then [K : F] = [E : F][K : E]. We also showed that if {e;} is a
basis for E as a vector space over F', and {k;} is a basis for K as a v-space over E, then {e;k;}
is a basis for K over F.

Other standard questions:
If FC FECK,and F C K is finite, is F C F,F C K finite? The answer is that everything is
finite and that [E : F|[K : F], [K : E]|[K : F], [K : F] = [K : E][E : F].

When we know [K : F|, there are not many choices for the dimension of F — F — K

Algebraic extenions

Definition 3. Let F' — FE be a field extension and oo € E. We consider
F < Fla] — F(a) CE

Lookt at F — F[z] — F[a] where ¢ : Flx] — F[a] is the unique surjective ring homomorphism
where © — a. If ¢ is an isomorphism, we call o trancendental. If ker¢ = (f), we call «

algebraic and the irreducible polynomial f the minimal polynomial of o over F. When « is
algebraic, Fla] is a field and [Fla] = F(a) : F] = deg f.

Definition 4.
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