Galois theory, lecture 2 lecture notes

28 januari 2013

Examination

The course webpage is www.math.kth.se/math/GRU/2012.2013/SF2732/ The examination consists of two homework problems and an exam. The homework problem are worth 12 points, ... The book is Algebra by Serge Lang.

1 Summary of last lecture

Recall that r is irreducible if $r=a b \Longrightarrow a$ is a unit or b is a unit.
Theorem 1. - If R is an UFD, then a non zero element $r \in R$ is prime iff r is irreducible.

- If R is a UFD, then so is $R[x]$. (This can be proved by Gauss lemma.)
- If R is a PID, then R is a UFD.
- $R[x]$ is PID iff R is a field. $(R-$ field $\Longrightarrow R[x] P I D$ is easy, the proof $R[x]-P I D \Longrightarrow R-$ field is below:

Assume $R[x]$ is PID, let $0 \neq r \in R$. We will show that r is invertible. ${ }^{1}$
To give a concrete example, why is $\mathbb{Z}[X]$ not a PID? Easy - just find an ideal minimally generated by at least two elements. After some experimentation, the simplest I could come up with was $(2, X)$.

For a general PID, we are to prove that every nonzero r with $\operatorname{deg} r=0$ is invertible. We will show that if r is not invertible, we would get an ideal minimlly generated by two elemnts. Let r be a nonzero prime \Longleftrightarrow irreducible element of degree 0 (it is enough to prove that the primes are invertible, then everything else is invertible to). Then consider the ideal $(r, X)=\left\{a_{0}+a_{1} X \ldots+a_{n} X n: r \mid a_{0}\right\}$. We have $(r) \subset(r, X)$. By assumption, $R[x]$ is a PID, so there is $a \in R[x]$ with $(a)=(r, X)$. But then $\operatorname{deg} a=0$, and $a \mid r$. It follows that a and r are associates, so $(r)=(r, X)$. The polynomial $r+X \in(r, X)$, so $r+X=(\alpha+\beta x) r$ and β has to be the inverse of r. This proves that every prime element r is invertible, and since every element is a product of primes, every element is invertible.

[^0]Theorem 2. If F is a field, then $F[x]$ is PID, $F[X, Y]$ is UFD.
$F[x]$ is PID:
Let $I \subset F[X]$ be an ideal, let $p(x)$ be a polynomial of minimal degree in I.
Then by the division algorithm, every polynomial $s(x)$ in I can be written as
$s=p q+r$ with $r=0$ or $\operatorname{deg} r<\operatorname{deg} p$. But then $r \in I$ so $r=0$ and $I=(p)$.

The second claim follows from $R-U D F \Longrightarrow R[X]$ - UDF and from the fact that $F[X]$ is $U F D$.

2 Lecture 2

Proposition 1. Let $r \in R$ be a prime element (equivalently $R /(r)$ is a domain or $r|a \cdot b \Longrightarrow r| a$ or $r \mid b$.) Then $R /(r)$ is a field.

Bevis. Take $S+(r) \in R /(r) \neq 0$ (that is $r \nmid s$) Consider the ideal $(r, s)=(t) \subset R$. Then $t \mid r$ and $t \mid s$. From this we get $r=t \cdot w$. We know $r \nmid t$, so $r \mid w$. We get $r \mid w \Longrightarrow r=t v r \Longrightarrow$. We want to find $a r+b s=1$, then $(b+(r))(s+(r))=1+(r)$.

Take \mathbb{Z} and a prime $p \in \mathbb{Z}$ Then the above theorem tells us that $\mathbb{Z} /(p)$ is a field.

Another example is hen F is a field, $f \in F[X]$ is an irreducible element. Then $F[X] /(f)$ is a field.

Note: The whole course is about constructing new fields from other fields. One way to do this is to quotient a PID by irreducible element. To be able to do this, we need methods to determine when an element of a ring is irreducible. This is a hard problem. Consider this example:

Example 1. Is the polynomial $X^{2}+1$ irredubcible in $\mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X],(\mathbb{Z} /(2))[X]$?

- In $\mathbb{Q}[X], X^{2}+1$ is irreducible.
- In $\mathbb{R}[X]$, it is irreducible.
- In $\mathbb{C}[X], x^{2}+1=(x-i)(x+i)$
- in $(\mathbb{Z} /(2))[x], x^{2}+1=(x+1)^{2}$

Let R be a domain, recall that its field of fractions can be constructed from all pairs $\left(r_{1}, r_{2}\right) \in R^{2}$ with $r_{2} \neq 0$. On these pairs, we define an equivalence ralation,

$$
(a, b) \sim(c, d) \text { if } a d=b c
$$

We denote the equivalence of (a, b) by $\frac{a}{b}$. The definition of \sim tells us that

$$
\frac{a}{b}=\frac{c}{d} \text { if } a d=b c
$$

so these 'fractions' behave just as usual fractions in \mathbb{Q} or \mathbb{R}. These fractions form a ring under addition

$$
\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

and multiplication

$$
\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}
$$

The class of $(0,1)$, the fraction $\frac{0}{1}$, acts as 0 , and $\frac{1}{1}$ has the role of 1 .

To verify that the construction works, we have to check that if $s=\frac{a}{b}$, and $s^{\prime}=\frac{a^{\prime}}{b^{\prime}}$, then $s=s^{\prime} \Longrightarrow s+t=s^{\prime}+t$. This transaletes into

$$
a b^{\prime}+a^{\prime} b=0 \Longrightarrow \frac{a d+b c}{b d}=\frac{a^{\prime} d+b^{\prime} c}{b^{\prime} d}
$$

and this can be proven by doing some algebraic calculations. This construction is called the field of fractions of R.

Eisentnein's criterion

Let R be a UFD and K its field of fractions. Let $f=a_{0}+a_{1} x+\ldots+a_{n} x^{n} \in R[x] \subset K[x]$ (coefficients in R). We want to know when f is irreducible in $K[x]$.
Theorem 3. Assume that there is a prime $p \neq 0 \in R$ such that $p \nmid a_{n}, p \mid a_{i} 0 \leq i<n, p^{2} \nmid a_{0}$. Then f is irreducible in $K[x]$.

First, an example:
Example 2. Is the polynomial $g=x^{4}+x^{3}+x^{2}+x+1 \in \mathbb{Q}[x]$ irreducible?

By Eisensteins criterion, $f=x^{4}+5 x^{3}+10 x^{2}+10 x+5$ is irreducible. But $g(x+1)=f(x)$, so g is irreducible.

Homomorphisms of polynomials rings

Theorem 4. Let $f: R \longrightarrow S$ be a ring homomorphism. (By ring homomorphism we mean a map that maps $0 \mapsto 0,1 \mapsto 1$, preserves addition and multiplication.) Then for every $s \in S$, there is a unique ring homomorphism $\bar{f}: R[x] \longrightarrow S$ such that $\bar{f}(r)=f(r)$ and $\bar{f}(x)=s$.

Field extensions

We will study the case $F \hookrightarrow E$ or (denoted E vertical line down to F)

Let $f \subset E, \alpha_{1} \ldots \alpha n \in E$. Then construct $F \hookrightarrow F\left[\alpha_{1}, \ldots, \alpha_{n}\right] \hookrightarrow F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \subset E$. By $F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$, we mean the smallest ring containing F and $\alpha_{1}, \ldots, \alpha_{n}$. By $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, we mean the smallest field that contains $F, \alpha_{1}, \ldots \alpha_{n} . F\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ contains all linear combinations of monomials $\alpha_{1}^{k_{1}} \ldots \alpha_{n}^{k_{n}}$. $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ also contains all inverses of the α_{i} :s.

Definition 1. $F \subset E$ is finitely generated if there are $\alpha_{r} \ldots \alpha_{n}$ in E such that $E=F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$
A natural question we might ask is if a composition of finite generated extensions is finitely generated. This is a rather hard question.

Definition 2. $F \subset E$ is finite extension if, as a vector space over F, E is finite-dimensional. In this case, we denote $\operatorname{dim}_{F}(E)=[E: F]$.

The standard questions here is again, if E is a finite extension of F and K is a finite extension of E, is K a finite extension of E ? and if it is, what is $[K: F]$?. This is a relatively easy question to answer.
assume $e_{1}, \ldots e_{n}$ is a base of E over F and k_{1}, \ldots, k_{m} is a finite base of K over E. We claim that $\left\{e_{i} \cdot k_{j}\right\}_{1 \leq i \leq n, 1 \leq j \leq m}$ is a base of K over F. We have to prove that everything in K is a linear combination of the $\left\{e_{i} \cdot k_{j}\right\}$ and that the $\left\{e_{i} \cdot k_{j}\right\}$ are linearly independent. We write $k=a_{1} k_{1}+\ldots a_{m} k_{m}$ with $a_{i} \in E$. Now we write each $a_{i}=\left(a_{i, 1} e_{1}+\ldots+a_{i, n} e_{n}\right)$, expand and are done.

But are the $\left\{e_{i} k_{j}\right\}$ linearly independent? Assume there is a sum $\sum_{i, j} a_{i, j} e_{i} k_{j}=0$ with coefficients $a_{i, j} \in F$. We write the sum as $\sum_{j} k_{j}\left(\sum_{i} a_{i, j} e_{i}\right)=0$. The k_{j} are linearly independent over E, so all the coefficients $\sum_{i} a_{i, j} e_{i}$ are 0 . But the e_{i} are linearly independent over F, so all $a_{i, j}=0$ which is what we wanted.

We proved that if $F \subset E \subset K$, then $[K: F]=[E: F][K: E]$. We also showed that if $\left\{e_{i}\right\}$ is a basis for E as a vector space over F, and $\left\{k_{j}\right\}$ is a basis for K as a v-space over E, then $\left\{e_{i} k_{j}\right\}$ is a basis for K over F.

Other standard questions:
If $F \subset E \subset K$, and $F \subset K$ is finite, is $F \subset E, E \subset K$ finite? The answer is that everything is finite and that $[E: F]|[K: F],[K: E]|[K: F],[K: F]=[K: E][E: F]$.

When we know [$K: F$], there are not many choices for the dimension of $F \hookrightarrow E \hookrightarrow K$

Algebraic extenions

Definition 3. Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$. We consider

$$
F \hookrightarrow F[\alpha] \hookrightarrow F(\alpha) \subset E
$$

Lookt at $F \hookrightarrow F[x] \longrightarrow F[\alpha]$ where $\phi: F[x] \longrightarrow F[\alpha]$ is the unique surjective ring homomorphism where $x \mapsto \alpha$. If ϕ is an isomorphism, we call α trancendental. If $\operatorname{ker} \phi=(f)$, we call α algebraic and the irreducible polynomial f the minimal polynomial of α over F. When α is algebraic, $F[\alpha]$ is a field and $[F[\alpha]=F(\alpha): F]=\operatorname{deg} f$.

Definition 4.

[^0]: ${ }^{1}$ The red boxes are my own notes from after the lecture that explains something I havn't seen earlier, or had trouble understanding, or trouble to follow or something that the lecturer skipped during the lecture

