Galois theory, lecture 2 lecture notes

28 januari 2013

Examination

The course webpage is www.math.kth.se/math/GRU/2012.2013/SF2732/ The examination consists of two homework problems and an exam. The homework problem are worth 12 points, ... The book is *Algebra* by Serge Lang.

1 Summary of last lecture

Recall that r is *irreducible* if $r = ab \Longrightarrow a$ is a unit or b is a unit.

Theorem 1. • If R is an UFD, then a non zero element $r \in R$ is prime iff r is irreducible.

- If R is a UFD, then so is R[x]. (This can be proved by Gauss lemma.)
- If R is a PID, then R is a UFD.
- R[x] is PID iff R is a field. (R field \implies R[x] PID is easy, the proof R[x] PID \implies R field is below:

Assume R[x] is PID, let $0 \neq r \in R$. We will show that r is invertible.¹

To give a concrete example, why is $\mathbb{Z}[X]$ not a PID? Easy - just find an ideal minimally generated by at least two elements. After some experimentation, the simplest I could come up with was (2, X).

For a general PID, we are to prove that every nonzero r with deg r = 0 is invertible. We will show that if r is not invertible, we would get an ideal minimly generated by two elemnts. Let r be a nonzero prime \iff irreducible element of degree 0 (it is enough to prove that the primes are invertible, then everything else is invertible to). Then consider the ideal $(r, X) = \{a_0 + a_1 X \dots + a_n X n : r | a_0\}$. We have $(r) \subset (r, X)$. By assumption, R[x] is a PID, so there is $a \in R[x]$ with (a) = (r, X). But then deg a = 0, and a | r. It follows that a and r are associates, so (r) = (r, X). The polynomial $r + X \in (r, X)$, so $r + X = (\alpha + \beta x)r$ and β has to be the inverse of r. This proves that every prime element r is invertible, and since every element is a product of primes, every element is invertible.

¹The red boxes are my own notes from after the lecture that explains something I havn't seen earlier, or had trouble understanding, or trouble to follow or something that the lecturer skipped during the lecture

Theorem 2. If F is a field, then F[x] is PID, F[X, Y] is UFD.

F[x] is PID: Let $I \subset F[X]$ be an ideal, let p(x) be a polynomial of minimal degree in I. Then by the division algorithm, every polynomial s(x) in I can be written as s = pq + r with r = 0 or deg $r < \deg p$. But then $r \in I$ so r = 0 and I = (p). The second claim follows from R - UDF $\Longrightarrow R[X]$ - UDF and from the fact

2 Lecture 2

that F[X] is UFD.

Proposition 1. Let $r \in R$ be a prime element (equivalently R/(r) is a domain or $r|a \cdot b \Longrightarrow r|a$ or r|b.) Then R/(r) is a field.

Bevis. Take $S + (r) \in R/(r) \neq 0$ (that is $r \nmid s$) Consider the ideal $(r, s) = (t) \subset R$. Then $t \mid r$ and $t \mid s$. From this we get $r = t \cdot w$. We know $r \nmid t$, so $r \mid w$. We get $r \mid w \implies r = tvr \implies$. We want to find ar + bs = 1, then (b + (r))(s + (r)) = 1 + (r).

Take \mathbb{Z} and a prime $p \in \mathbb{Z}$ Then the above theorem tells us that $\mathbb{Z}/(p)$ is a field.

Another example is hen F is a field, $f \in F[X]$ is an irreducible element. Then F[X]/(f) is a field.

Note: The whole course is about constructing new fields from other fields. One way to do this is to quotient a PID by irreducible element. To be able to do this, we need methods to determine when an element of a ring is irreducible. This is a hard problem. Consider this example:

Example 1. Is the polynomial $X^2 + 1$ irredubcible in $\mathbb{Q}[X], \mathbb{R}[X], \mathbb{C}[X], (\mathbb{Z}/(2))[X]$?

- In $\mathbb{Q}[X]$, $X^2 + 1$ is irreducible.
- In $\mathbb{R}[X]$, it is irreducible.
- In $\mathbb{C}[X], x^2 + 1 = (x i)(x + i)$
- in $(\mathbb{Z}/(2))[x], x^2 + 1 = (x+1)^2$

Let R be a domain, recall that its field of fractions can be constructed from all pairs $(r_1, r_2) \in \mathbb{R}^2$ with $r_2 \neq 0$. On these pairs, we define an equivalence relation,

$$(a,b) \sim (c,d)$$
 if $ad = bc$

We denote the equivalence of (a, b) by $\frac{a}{b}$. The definition of \sim tells us that

$$\frac{a}{b} = \frac{c}{d}$$
 if $ad = bc$

so these 'fractions' behave just as usual fractions in \mathbb{Q} or \mathbb{R} . These fractions form a ring under addition

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$$

and multiplication

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

The class of (0, 1), the fraction $\frac{0}{1}$, acts as 0, and $\frac{1}{1}$ has the role of 1.

To verify that the construction works, we have to check that if $s = \frac{a}{b}$, and $s' = \frac{a'}{b'}$, then $s = s' \Longrightarrow s + t = s' + t$. This transaletes into

$$ab' + a'b = 0 \Longrightarrow \frac{ad + bc}{bd} = \frac{a'd + b'c}{b'd}$$

and this can be proven by doing some algebraic calculations. This construction is called the **field** of fractions of R.

Eisentnein's criterion

Let R be a UFD and K its field of fractions. Let $f = a_0 + a_1x + \ldots + a_nx^n \in R[x] \subset K[x]$ (coefficients in R). We want to know when f is irreducible in K[x].

Theorem 3. Assume that there is a prime $p \neq 0 \in R$ such that $p \nmid a_n, p \mid a_i 0 \leq i < n, p^2 \nmid a_0$. Then f is irreducible in K[x].

First, an example:

Example 2. Is the polynomial $g = x^4 + x^3 + x^2 + x + 1 \in \mathbb{Q}[x]$ irreducible?

By Eisensteins criterion, $f = x^4 + 5x^3 + 10x^2 + 10x + 5$ is irreducible. But g(x+1) = f(x), so g is irreducible.

Homomorphisms of polynomials rings

Theorem 4. Let $f : R \longrightarrow S$ be a ring homomorphism. (By ring homomorphism we mean a map that maps $0 \mapsto 0, 1 \mapsto 1$, preserves addition and multiplication.) Then for every $s \in S$, there is a unique ring homomorphism $\overline{f} : R[x] \longrightarrow S$ such that $\overline{f}(r) = f(r)$ and $\overline{f}(x) = s$.

Field extensions

We will study the case $F \hookrightarrow E$ or (denoted E vertical line down to F)

Let $f \,\subset E, \alpha_1 \ldots \alpha_n \in E$. Then construct $F \hookrightarrow F[\alpha_1, \ldots, \alpha_n] \hookrightarrow F(\alpha_1, \ldots, \alpha_n) \subset E$. By $F[\alpha_1, \ldots, \alpha_n]$, we mean the smallest ring containing F and $\alpha_1, \ldots, \alpha_n$. By $F(\alpha_1, \ldots, \alpha_n)$, we mean the smallest field that contains $F, \alpha_1, \ldots, \alpha_n$. $F[\alpha_1, \ldots, \alpha_n]$ contains all linear combinations of monomials $\alpha_1^{k_1} \ldots \alpha_n^{k_n}$. $F(\alpha_1, \ldots, \alpha_n)$ also contains all inverses of the α_i :s.

Definition 1. $F \subset E$ is finitely generated if there are $\alpha_r \ldots \alpha_n$ in E such that $E = F(\alpha_1, \ldots, \alpha_n)$

A natural question we might ask is if a composition of finite generated extensions is finitely generated. This is a rather hard question.

Definition 2. $F \subset E$ is finite extension if, as a vector space over F, E is finite-dimensional. In this case, we denote $\dim_F(E) = [E : F]$.

The standard questions here is again, if E is a finite extension of F and K is a finite extension of E, is K a finite extension of E? and if it is, what is [K : F]?. This is a relatively easy question to answer.

assume e_1, \ldots, e_n is a base of E over F and k_1, \ldots, k_m is a finite base of K over E. We claim that $\{e_i \cdot k_j\}_{1 \le i \le n, 1 \le j \le m}$ is a base of K over F. We have to prove that everything in K is a linear combination of the $\{e_i \cdot k_j\}$ and that the $\{e_i \cdot k_j\}$ are linearly independent. We write $k = a_1k_1 + \ldots a_mk_m$ with $a_i \in E$. Now we write each $a_i = (a_{i,1}e_1 + \ldots + a_{i,n}e_n)$, expand and are done.

But are the $\{e_ik_j\}$ linearly independent? Assume there is a sum $\sum_{i,j} a_{i,j}e_ik_j = 0$ with coefficients $a_{i,j} \in F$. We write the sum as $\sum_j k_j (\sum_i a_{i,j}e_i) = 0$. The k_j are linearly independent over E, so all the coefficients $\sum_i a_{i,j}e_i$ are 0. But the e_i are linearly independent over F, so all $a_{i,j} = 0$ which is what we wanted.

We proved that if $F \subset E \subset K$, then [K : F] = [E : F][K : E]. We also showed that if $\{e_i\}$ is a basis for E as a vector space over F, and $\{k_j\}$ is a basis for K as a v-space over E, then $\{e_ik_j\}$ is a basis for K over F.

Other standard questions:

If $F \subset E \subset K$, and $F \subset K$ is finite, is $F \subset E, E \subset K$ finite? The answer is that everything is finite and that [E:F]|[K:F], [K:E]|[K:F], [K:F] = [K:E][E:F].

When we know [K:F], there are not many choices for the dimension of $F \hookrightarrow E \hookrightarrow K$

Algebraic extensions

Definition 3. Let $F \hookrightarrow E$ be a field extension and $\alpha \in E$. We consider

$$F \hookrightarrow F[\alpha] \hookrightarrow F(\alpha) \subset E$$

Lookt at $F \hookrightarrow F[x] \longrightarrow F[\alpha]$ where $\phi: F[x] \longrightarrow F[\alpha]$ is the unique surjective ring homomorphism where $x \mapsto \alpha$. If ϕ is an isomorphism, we call α **trancendental**. If ker $\phi = (f)$, we call α **algebraic** and the irreducible polynomial f the **minimal polynomial** of α over F. When α is algebraic, $F[\alpha]$ is a field and $[F[\alpha] = F(\alpha): F] = \deg f$.

Definition 4.