
Galois theory, lecture 2
lecture notes

28 januari 2013

Examination
The course webpage is www.math.kth.se/math/GRU/2012.2013/SF2732/ The examination con-
sists of two homework problems and an exam. The homework problem are worth 12 points,
. . . The book is Algebra by Serge Lang.

1 Summary of last lecture
Recall that r is irreducible if r = ab =⇒ a is a unit or b is a unit.

Theorem 1. • If R is an UFD, then a non zero element r ∈ R is prime iff r is irreducible.

• If R is a UFD, then so is R[x]. (This can be proved by Gauss lemma.)

• If R is a PID, then R is a UFD.

• R[x] is PID iff R is a field. (R - field =⇒ R[x] PID is easy, the proof R[x] - PID =⇒ R -
field is below:

Assume R[x] is PID, let 0 6= r ∈ R. We will show that r is invertible.1

To give a concrete example, why is Z[X] not a PID? Easy - just find an ideal
minimally generated by at least two elements. After some experimentation, the
simplest I could come up with was (2, X).

For a general PID, we are to prove that every nonzero r with deg r = 0 is inver-
tible. We will show that if r is not invertible, we would get an ideal minimlly ge-
nerated by two elemnts. Let r be a nonzero prime⇐⇒ irreducible element of de-
gree 0 (it is enough to prove that the primes are invertible, then everything else
is invertible to). Then consider the ideal (r,X) = {a0+a1X . . .+anXn : r|a0}.
We have (r) ⊂ (r,X). By assumption, R[x] is a PID, so there is a ∈ R[x] with
(a) = (r,X). But then deg a = 0, and a|r. It follows that a and r are associates,
so (r) = (r,X). The polynomial r +X ∈ (r,X), so r +X = (α + βx)r and β
has to be the inverse of r. This proves that every prime element r is invertible,
and since every element is a product of primes, every element is invertible.

1The red boxes are my own notes from after the lecture that explains something I havn’t seen earlier, or had
trouble understanding, or trouble to follow or something that the lecturer skipped during the lecture
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Theorem 2. If F is a field, then F [x] is PID, F [X,Y ] is UFD.
F [x] is PID:
Let I ⊂ F [X] be an ideal, let p(x) be a polynomial of minimal degree in I.
Then by the division algorithm, every polynomial s(x) in I can be written as
s = pq + r with r = 0 or deg r < deg p. But then r ∈ I so r = 0 and I = (p).

The second claim follows from R - UDF =⇒ R[X] - UDF and from the fact
that F [X] is UFD.

2 Lecture 2
Proposition 1. Let r ∈ R be a prime element (equivalently R

/
(r) is a domain or r|a ·b =⇒ r|a

or r|b.) Then R
/
(r) is a field.

Bevis. Take S + (r) ∈ R
/
(r) 6= 0 (that is r - s) Consider the ideal (r, s) = (t) ⊂ R. Then t|r

and t|s. From this we get r = t ·w. We know r - t, so r|w. We get r|w =⇒ r = tvr =⇒. We want
to find ar + bs = 1, then (b+ (r))(s+ (r)) = 1 + (r).

Take Z and a prime p ∈ Z Then the above theorem tells us that Z
/
(p) is a field.

Another example is hen F is a field, f ∈ F [X] is an irreducible element. Then F [X]
/
(f) is a

field.
Note: The whole course is about constructing new fields from other fields. One way to do this

is to quotient a PID by irreducible element. To be able to do this, we need methods to determine
when an element of a ring is irreducible. This is a hard problem. Consider this example:

Example 1. Is the polynomial X2 + 1 irredubcible in Q[X],R[X],C[X],
(
Z
/
(2)
)
[X]?

• In Q[X], X2 + 1 is irreducible.

• In R[X], it is irreducible.

• In C[X], x2 + 1 = (x− i)(x+ i)

• in
(
Z
/
(2)
)
[x], x2 + 1 = (x+ 1)2

Let R be a domain, recall that its field of fractions can be constructed from all pairs (r1, r2) ∈ R2

with r2 6= 0. On these pairs, we define an equivalence ralation,

(a, b) ∼ (c, d) if ad = bc

We denote the equivalence of (a, b) by a
b . The definition of ∼ tells us that

a

b
=
c

d
if ad = bc

so these ’fractions’ behave just as usual fractions in Q or R. These fractions form a ring under
addition

a

b
+
c

d
=
ad+ bc

bd
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and multiplication
a

b
· c
d
=
ac

bd

The class of (0, 1), the fraction 0
1 , acts as 0, and

1
1 has the role of 1.

To verify that the construction works, we have to check that if s = a
b , and s′ = a′

b′ , then
s = s′ =⇒ s+ t = s′ + t. This transaletes into

ab′ + a′b = 0 =⇒ ad+ bc

bd
=
a′d+ b′c

b′d

and this can be proven by doing some algebraic calculations. This construction is called the field
of fractions of R.

Eisentnein’s criterion
Let R be a UFD and K its field of fractions. Let f = a0 + a1x + . . . + anx

n ∈ R[x] ⊂ K[x]
(coefficients in R). We want to know when f is irreducible in K[x].

Theorem 3. Assume that there is a prime p 6= 0 ∈ R such that p - an, p|ai0 ≤ i < n, p2 - a0.
Then f is irreducible in K[x].

First, an example:

Example 2. Is the polynomial g = x4 + x3 + x2 + x+ 1 ∈ Q[x] irreducible?

By Eisensteins criterion, f = x4 + 5x3 + 10x2 + 10x+ 5 is irreducible. But g(x+ 1) = f(x), so
g is irreducible.

Homomorphisms of polynomials rings
Theorem 4. Let f : R −→ S be a ring homomorphism. (By ring homomorphism we mean a
map that maps 0 7→ 0, 1 7→ 1, preserves addition and multiplication.) Then for every s ∈ S,
there is a unique ring homomorphism f : R[x] −→ S such that f(r) = f(r) and f(x) = s.

Field extensions
We will study the case F ↪−→ E or (denoted E vertical line down to F )

Let f ⊂ E,α1 . . . αn ∈ E. Then construct F ↪−→ F [α1, . . . , αn] ↪−→ F (α1, . . . , αn) ⊂ E. By
F [α1, . . . , αn], we mean the smallest ring containing F and α1, . . . , αn. By F (α1, . . . , αn), we
mean the smallest field that contains F, α1, . . . αn. F [α1, . . . , αn] contains all linear combinations
of monomials αk1

1 . . . αkn
n . F (α1, . . . , αn) also contains all inverses of the αi:s.

Definition 1. F ⊂ E is finitely generated if there are αr . . . αn in E such that E = F (α1, . . . , αn)

A natural question we might ask is if a composition of finite generated extensions is finitely
generated. This is a rather hard question.
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Definition 2. F ⊂ E is finite extension if, as a vector space over F , E is finite-dimensional.
In this case, we denote dimF (E) = [E : F ].

The standard questions here is again, if E is a finite extension of F and K is a finite extension
of E, is K a finite extension of E? and if it is, what is [K : F ]?. This is a relatively easy
question to answer.

assume e1, . . . en is a base of E over F and k1, . . . , km is a finite base of K over E. We claim
that {ei · kj}1≤i≤n,1≤j≤m is a base of K over F . We have to prove that everything in K is a
linear combination of the {ei · kj} and that the {ei · kj} are linearly independent. We write
k = a1k1 + . . . amkm with ai ∈ E. Now we write each ai = (ai,1e1 + . . . + ai,nen), expand and
are done.

But are the {eikj} linearly independent? Assume there is a sum
∑

i,j ai,jeikj = 0 with coefficients
ai,j ∈ F . We write the sum as

∑
j kj(

∑
i ai,jei) = 0. The kj are linearly independent over E,

so all the coefficients
∑

i ai,jei are 0. But the ei are linearly independent over F , so all ai,j = 0
which is what we wanted.

We proved that if F ⊂ E ⊂ K, then [K : F ] = [E : F ][K : E]. We also showed that if {ei} is a
basis for E as a vector space over F , and {kj} is a basis for K as a v-space over E, then {eikj}
is a basis for K over F .

Other standard questions:
If F ⊂ E ⊂ K, and F ⊂ K is finite, is F ⊂ E,E ⊂ K finite? The answer is that everything is
finite and that [E : F ]|[K : F ], [K : E]|[K : F ], [K : F ] = [K : E][E : F ].

When we know [K : F ], there are not many choices for the dimension of F ↪−→ E ↪−→ K

Algebraic extenions
Definition 3. Let F ↪−→ E be a field extension and α ∈ E. We consider

F ↪−→ F [α] ↪−→ F (α) ⊂ E

Lookt at F ↪−→ F [x] −→ F [α] where φ : F [x] −→ F [α] is the unique surjective ring homomorphism
where x 7→ α. If φ is an isomorphism, we call α trancendental. If kerφ = (f), we call α
algebraic and the irreducible polynomial f the minimal polynomial of α over F . When α is
algebraic, F [α] is a field and [F [α] = F (α) : F ] = deg f .

Definition 4.
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