Institutionen för matematik KTH
Svante Linusson
7909444

Hand-in-problems for Convex Polytopes VT13 First set of problems

This list of problems will be extended during the course.
Cooperation regarding the hand-in-problems is not permitted.
You must have written your solution on your own. Any external source used must be cited.

List of Hand-in problems

1) Draw the face lattice of the $\operatorname{Pyr}\left(\Delta_{1} \times \Delta_{1}\right)$.
2) Is $\left(\Delta_{2} \times \Delta_{2}\right)^{\Delta} \simeq C_{4}(6)$?
3) Construct a small poset that satisfies the conditions (i), (iii) and (iv) of Theorem 2.7 but is not the face lattice of a convex polytope (verify this). Does your example correspond to some geometric object?
4) Assume that one is given the vertex-facet incidence matrix $M(P) \in\{0,1\}^{m \times n}$ of a polytope P with n facets and m vertices. How can the face lattice of the polytope P be uniquely reconstructed from the knowledge of $M(P)$ alone? How does the dimension of P appear in the computation? How does your algorithm fail if the matrix you apply it to is not the vertex-facet matrix a polytope? What is the relation between the matrices of P and P^{Δ} ?
5) Study the combinatorics of the traveling salesman polytope $Q_{T S P}(5)$. How many vertices does it have? What is its dimension? (The answer is in the book, but you should prove it.) Which vertices are connected by edges?

Problems 1-5 are due $\mathbf{1 5 / 2}$

Good Luck!!

Svante

