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Abstract. We describe many different realizations with integer coordinates for the associ-
ahedron (i.e. the Stasheff polytope) and for the cyclohedron (i.e. the Bott–Taubes polytope)
and compare them with the permutahedron of type A and B, respectively.

The coordinates are obtained by an algorithm which uses an oriented Coxeter graph of
type An or Bn as the only input data and which specializes to a procedure presented by
J.-L. Loday for a certain orientation of An . The described realizations have cambrian fans
of type A and B as normal fans. This settles a conjecture of N. Reading for cambrian lattices
of these types.

1. Introduction

The associahedron Asso(An−1) was discovered by Stasheff in 1963 [27], and is of great
importance in algebraic topology. It is a simple (n − 1)-dimensional convex polytope
whose 1-skeleton is isomorphic to the undirected Hasse diagram of the Tamari lattice on
the set Tn+2 of triangulations of an (n+2)-gon (see for instance [16]) and therefore a fun-
damental example of a secondary polytope as described in [13]. Numerous realizations
of the associahedron have been given, see [6], [17], and the references therein.

An elegant and simple realization of the associahedron by picking some of the in-
equalities for the permutahedron is due to Shnider and Sternberg [25] (for a corrected
version consider Appendix B of [28]). The removed inequalities are related to the ver-
tices by a well-known surjection from Sn to the set Yn of planar binary trees that relates
the weak order of An−1 with the Tamari lattice as described in Section 9 of [2]. Loday
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recently presented an algorithm to compute the coordinates of this realization, [17]: label
the vertices of the associahedron by planar binary trees with n + 2 leaves and apply a
simple algorithm on trees to obtain integer coordinates in Rn .

The associahedron fits, up to combinatorial equivalence, in a larger family of polytopes
discovered by Fomin and Zelevinsky [11] (and realized as convex polytopes by Chapoton
et al. [6]) that is indexed by the elements in the Cartan–Killing classification. Among
these generalized associahedra, the cyclohedron Asso(Bn) was first described by Bott
and Taubes in 1994 [4] in connection with knot theory and rediscovered independently
by Simion [26]. It is a simple n-dimensional convex polytope whose vertices are given by
the set T B

n+2 of centrally symmetric triangulations of a (2n+2)-gon. Various realizations
have also been given in [6], [9], [19], [23], and [26], but none of them is similar to
Loday’s realization.

It is a natural question to ask for a construction similar to Loday’s for the cyclohedron
and we present such a construction in this article: Starting with a realization of the
permutahedron Perm(Bn), i.e. the convex hull of the orbit of the point (1, 2, . . . , 2n)
with respect to the action of the hyperoctahedral group, we give an explicit description of
realizations of the cyclohedron by removing facets of Perm(Bn). Moreover, we introduce
an algorithm to obtain (integer) coordinates for the vertices of these realizations.

It should also be mentioned that the associahedron and cyclohedron fit into another
large family of polytopes, the graph associahedra introduced by Carr and Devadoss [5]
and by Davis et al. [7] in the study of real blow-ups of projective hyperplane arrange-
ments. Generalized associahedra and graph associahedra fit into the class of generalized
permutahedra of Postnikov [21] where the right-hand sides for the facet inequalities
of the permutahedron Perm(An−1) are altered. In fact, the associahedron and cyclohe-
dron can be obtained from this permutahedron by changing the right-hand side of some
facet inequalities as described for example by Postnikov [21]. This description of the
cyclohedron is obtained from “cyclic intervals of [n]”, that is, the cyclohedron is seen as
“graph associahedron of a cycle”. On the contrary, the realizations given in this article
see the associahedron and cyclohedron related to the Coxeter graph of type A and B.
The associahedron and cyclohedron may be obtained in many ways by omission of some
inequalities. We explicitly describe possible choices for these facet inequalities related
to oriented Coxeter graphs of type A and B and the resulting coordinates. Moreover, the
presented realizations of the cyclohedron are the first explicit realizations as a “general-
ized type B permutahedron”, i.e. the cyclohedron is obtained from the permutahedron
of type B by changing the right-hand side of some inequalities.

It turns out that Loday’s construction is generalized in two ways by our algorithm:
Firstly, for a certain orientation of the Coxeter graph of type A our algorithm coincides
with his construction and, secondly, our algorithm also works for the type B associ-
ahedron, it yields coordinates for the cyclohedron for any oriented Coxeter graph of
type B.

In Sections 1.1 and 1.2 we explain our algorithm and realizations of the associa-
hedron and of the cyclohedron and state the main results. These results are proved in
Sections 2 and 3 by explicitly stating an H-representation1 for each realization. Finally

1 There are two ways to realize a polytope: The H-representation is the intersection of a finite number of
closed half spaces and the V-description is the convex hull of a finite number of points, see [30] for further
details.
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in Section 4 we state some observations concerning isometry classes and barycenters of
these realizations. Moreover, in this section we show that the normal fans of the realiza-
tions we provide coincide with the cambrian fans of type A and B. We settle therefore
Conjecture 1.1 of [22] in type A and B.

Note. We remark that our construction yields polytopes with the combinatorial type of
the generalized associahedra of type An and Bn . It might be worth mentioning that the
combinatorics of all the polytopes involved is determined by their 1-skeleton or graph,
since these polytopes are simple. This was shown by Blind and Mani-Levitska [3] as
well as by Kalai [14].

1.1. Realizations of the Associahedron

Let Sn be the symmetric group acting on the set [n] = {1, . . . , n}. As a Coxeter group
of type An−1, Sn is generated by the simple transpositions τi = (i, i + 1), i ∈ [n − 1].
The Coxeter graph An−1 is then

�1 �2 �3 �n�1

: : :

Let A be an orientation of An−1. Following Reading, we distinguish between up and
down elements of {2, . . . , n−1}: An element i ∈ {2, . . . , n−1} is up if the edge {τi−1, τi }
is directed from τi to τi−1 and down otherwise. We extend this definition to [n] by the
convention that 1 and n are always down. We remark that, in Reading’s work, 1 and n
can be chosen to be up or down. Let DA be the set of down elements and let UA be the
set of up elements (possibly empty).

The notion of up and down induces a labelling of a fixed convex (n + 2)-gon P as
follows: label one vertex of the (n+2)-gon by zero. The adjacent vertex in counterclock-
wise direction is labelled by the smallest down element of [n] not already used. Repeat
this procedure as long as there is a down element that has not been used. If there is no
such element use label n + 1 and continue to label the next counterclockwise element
by the largest up element of [n] that has not been used so far and iterate. An example is
given in Fig. 1.

0

1

2

3

4

5

6

�1 �2 �3 �4

Fig. 1. A labelling of a heptagon that corresponds to the orientation A on A4 shown inside the heptagon.
We have DA = {1, 3, 5} and UA = {2, 4}.
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Now we consider P labelled according to a fixed orientation A . A triangulation T
of P is a planar graph with vertex set the vertices of P and edge set the edges of P and
n− 1 non-crossing diagonals different from the boundary edges. We denote by Tn+2 the
set of all triangulations of P and describe a triangulation by its non-crossing diagonals.
Our goal is now to define an injective map

MA : Tn+2 −→ R
n

T 	−→ (x1, x2, . . . , xn)

that assigns explicit coordinates to a triangulation.
Before we define MA , we introduce a family of functions µi : {0, 1, . . . , n + 1} →

[n+ 2] that measure distances between labels of P and that is parameterized by i ∈ [n].
For j < i , µi ( j) counts the number of edges {a, b} of the path (on the boundary of P)
connecting i and j that uses only labels ≤ i . For j ≥ i , µi ( j) counts the number of
edges {a, b} of the path (on the boundary of P) connecting i and j that uses only labels≥
i . We emphasize that these paths are unique because of the condition on the labels allowed.
For instance, we have µ4(5) = 2 and µ5(4) = 5 in Fig. 1. For a triangulation T ∈ Tn+2

of P and i ∈ [n], we denote by LT
i the set {a | 0 ≤ a < i and {a, i} ∈ T } and by RT

i the
set {b | i < b ≤ n + 1 and {b, i} ∈ T }. Set

pT
	 (i) := max

a∈LT
i

{µi (a)} and pT
r (i) := max

b∈RT
i

{µi (b)}.

The weight ωi of i in T is the integer pT
	 (i)p

T
r (i). We now define the coordinates xi

of MA (T ):

xi :=
{
ωi if i ∈ DA ,

n + 1− ωi if i ∈ UA .

In the setting of Fig. 2, let A 1 denote the orientation that yields the realization on
the left and let A 2 denote the orientation that yields the realization on the right. Con-
sider the triangulations T1 = {{0, 3}, {2, 3}, {2, 4}}, T2 = {{0, 4}, {2, 4}, {3, 4}}, T3 =

T1 = 0

1

2

3

4

5

T3 = 0

1

2

3

4

5

T2 = 0

1

2 3

4

5

T4 = 0

1

2 3

4

5

Fig. 2. The vertices of the two associahedra shown have coordinates that are computed from triangulations
of labelled hexagons.
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{{1, 2}, {1, 5}, {3, 5}}, and T4 = {{1, 2}, {1, 3}, {1, 5}} that are given by their set of diag-
onals (T1, T3 are triangulations of the left hexagon while T2, T4 are triangulations of the
right hexagon). Then

MA 1(T1) = MA 2(T2) = (1, 2, 3, 4) and MA 1(T3) = MA 2(T4) = (4, 3, 2, 1).

Theorem 1.1. Fix an orientation A on An−1. The convex hull of {MA (T ) | T ∈ Tn+2}
is a realization of the associahedron Asso(An−1) with integer coordinates.

This V-representation of Asso(An−1) as the convex hull of vertices is proved in Section 2.

Remark 1.2. If all edges of An−1 are directed from left to right, then the realization
just described coincides with the one given by Loday. In this situation, UA = ∅. Let
T ∈ Tn+2 and for each i ∈ [n], let a and b be such that pT

	 (i) = µi (a) and pT
r (i) = µi (b).

Consider the triangle {a, i, b}. Label this triangle by i . Now, take the dual graph of T : it
is a planar binary tree with n+ 1 leaves whose root is determined by the edge {0, n+ 1}
of T and whose internal nodes are labelled by the label of the corresponding triangle.
Then for each i ∈ [n] the weight ωi of i is the product of the leaves of the left side of i
and of the leaves of the right side. That is precisely how Loday computes the coordinates
of the vertices in his realization, starting from planar binary trees.

We are now interested in a surjective map

�A : Sn → Tn+2

for any given orientation A of An−1. These maps have been used earlier. Billera and
Sturmfels used them in [1] where associahedra are described as iterated fibre poly-
topes. Other references are Reiner [23], Björner and Wachs [2, Remark 9.14], Loday
and Ronco [18], Tonks [29], and Reading [22], where Reading used this family of maps
in his study of cambrian lattices of type A. The orientation A where each edge of An−1

is oriented from left to right yields a well-studied map that turns out to be a lattice
epimorphism from the (right) weak order lattice to the Tamari lattice. In fact, the undi-
rected Hasse diagram of a cambrian lattice of type A is combinatorially equivalent to the
1-skeleton of Asso(An−1) [22, Theorem 1.3]. In other words, these maps can be viewed
as “1-skeleton” maps from Perm(An−1) to Asso(An−1).

We follow the procedure given in [22] by Reading to describe these maps �A . We
remark that Reading uses the left weak order while we prefer the right weak order. So
we invert σ ∈ Sn to translate between left and right weak order. Let σ ∈ Sn and start
with the path of the labelled (n + 2)-gon that connects 0 with n + 1 and passes through
all down elements. Now read the permutation σ−1 (represented as a word in [n]) from
left to right and construct inductively a new path from 0 to n+1: If the next letter of σ−1

is a down element then delete this element in the path; if the next letter is an up element
then insert this element between its largest predecessor and its smallest successor in the
path. The edges used during this process define a triangulation �A (σ ) of the labelled
(n + 2)-gon, see Fig. 3 for an example.
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Fig. 3. We assume the same orientation A of A5 as in Figure 1. The permutation σ = 12345 yields the six
paths shown on the left. The edges of these paths form the diagonals of the triangulation �A (σ ) shown on
the right.

The permutahedron Perm(An−1) is the classical permutahedronn−1 which is defined
as the convex hull of the points

M(σ ) := (σ (1), σ (2), . . . , σ (n)) ∈ Rn, ∀σ ∈ Sn.

The idea of Shnider and Sternberg to obtain the associahedron from the permutahedron
by discarding inequalities extends to all realizations of the associahedron of Theorem 1.1.
The map KA assigns subsets of [n − 1] to a diagonal and is defined in Section 2.

Proposition 1.3. Fix an orientation A . The associahedron of Theorem 1.1 is given
by a subset of the inequalities for the permutahedron Perm(An−1). These inequalities
are determined by the image under KA of the diagonals of the (n + 2)-gon labelled
according to A .

Moreover, the following analog to Proposition 2 of [17] shows that our realizations are
closely related to the maps �A : A triangulation T has a singleton {σ } = (�A )

−1(T ) as
preimage if and only if MA (T ) is a vertex of the permutahedron Perm(An−1). However,
there are more ways to characterize the common vertices of the associahedron and
permutahedron which depend on a chosen orientation A .

Proposition 1.4. Fix an orientation A on An−1 and let T ∈ Tn+2 and σ ∈ Sn . The
following statements are equivalent:

(a) MA (T ) = M(σ ).
(b) �A (σ ) = T and the diagonals of T can be labelled such that

∅ ⊂ KA (D1) ⊂ · · · ⊂ KA (Dn−1) ⊂ [n]

is a sequence of strictly increasing nested sets.
(c) (�A )

−1(T ) = {σ }.
(d) �A (σ ) = T and for each i ∈ [n] we have pT

	 (i) = 1 or pT
r (i) = 1.

The proof of both propositions is postponed to Section 2.
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1.2. Realizations of the Cyclohedron

An orientation A of A2n−1 is symmetric if the edges {τi , τi+1} and {τ2n−i−1, τ2n−i } are
oriented in opposite directions for all i ∈ [2n − 2]. There is a bijection between the
symmetric orientations of A2n−1 and the orientations B of the Coxeter graph Bn that
we describe below. A triangulation T ∈ T2n+2 is centrally symmetric if T , viewed as a
triangulation of a regular (2n + 2)-gon, is centrally symmetric. Let T B

2n+2 be the set of
the centrally symmetric triangulations of the labelled (2n + 2)-gon.

Theorem 1.5. Let A be a symmetric orientation of A2n−1. The convex hull of {MA (T ) |
T ∈ T B

2n+2} is a realization of the cyclohedron Asso(Bn) with integer coordinates.

A proof of Theorem 1.5 is given in Section 3, examples are shown in Figs. 4 and 5.
The latter shows a realization of Asso(B3) together with a table of the coordinates of
its vertices and the corresponding triangulations of the labelled octagon. We emphasize
that Theorem 1.5 is not true if the orientation A is not symmetric as also visualized in
Fig. 4: the obtained convex hull does not have the correct dimension, is not simple and
has triangular faces.

The hyperoctahedral group Wn is the subgroup of S2n that consists of all permuta-
tions σ with the property σ(2n + 1− i)+ σ(i) = 2n + 1 for all i ∈ [n]. As a Coxeter
group of type Bn , the hyperoctahedral group is generated by the simple transpositions
si := τiτ2n−i , i ∈ [n − 1], and the transposition t = τn . The Coxeter graph Bn is

t s1 s2 sn�1
4

: : :

There is a bijection between the orientations of Bn and the symmetric orientations
of A2n−1. Let B be an orientation of Bn , then we construct an orientation of A2n−1

by putting the orientation B on the subgraph of An−1 that consists of the vertices
τn, τn+1, . . . , τ2n−1, and by completing the orientation symmetrically with respect to τn .

Fig. 4. Coordinates obtained from symmetric triangulations with symmetric A yield a generalized associ-
ahedron of type Bn as shown on the left (bold edges). If A is not symmetric, the convex hull does not even
yield a polytope of the correct dimension as shown on the right (bold edges).
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Label Coordinate Triangulation Label Coordinate Triangulation

1 (3; 5; 6; 1; 2; 4) 0

1

2 3

4 5

6

7

2 (3; 6; 5; 2; 1; 4) 0

1

2 3

4 5

6

7

3 (2; 4; 6; 1; 3; 5) 0

1

2 3

4 5

6

7

4 (1; 6; 3; 4; 1; 6) 0

1

2 3

4 5

6

7

5 (1; 4; 5; 2; 3; 6) 0

1

2 3

4 5

6

7

6 (1; 6;�1; 8; 1; 6) 0

1

2 3

4 5

6

7

7 (1; 3; 5; 2; 4; 6) 0

1

2 3

4 5

6

7

8 (1; 2; 3; 4; 5; 6) 0

1

2 3

4 5

6

7

9 (1; 2; 4; 3; 5; 6) 0

1

2 3

4 5

6

7

10 (6;�3; 3; 4; 10; 1) 0

1

2 3

4 5

6

7

11 (6;�3; 4; 3; 10; 1) 0

1

2 3

4 5

6

7

12 (2; 3; 6; 1; 4; 5) 0

1

2 3

4 5

6

7

13 (6;�1; 6; 1; 8; 1) 0

1

2 3

4 5

6

7

14 (6; 5;�5; 12; 2; 1) 0

1

2 3

4 5

6

7

15 (5; 6;�5; 12; 1; 2) 0

1

2 3

4 5

6

7

16 (6; 3; 6; 1; 4; 1) 0

1

2 3

4 5

6

7

17 (6; 5; 4; 3; 2; 1) 0

1

2 3

4 5

6

7

18 (5; 6; 4; 3; 1; 2) 0

1

2 3

4 5

6

7

19 (4; 6; 5; 2; 1; 3) 0

1

2 3

4 5

6

7

20 (4; 5; 6; 1; 2; 3) 0

1

2 3

4 5

6

7

Fig. 5. The vertex labels of this realization of the generalized associahedron of type B3 are decoded into
coordinates and triangulations in the table. The corresponding orientation of B3 is obtained by directing the
edges from left to right.
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For convenience, we sometimes refer to a symmetric orientation on A2n−1 as B . For
instance, the orientation

t s1 s2 s3 s4
4

on B5 gives the following orientation on A9:

�1 �2 �3 �4 �5 �6 �7 �8 �9

Let B be an orientation of Bn , or equivalently a symmetric orientation of A2n−1.
Denote by �B

B the restriction �B |Wn of the map �B to Wn . Then

�B
B : Wn −→ T B

2n+2

is surjective.
Reading showed that �B

B is a surjective lattice homomorphism from the weak or-
der lattice on Wn to a cambrian lattice of type Bn . Again, the undirected Hasse dia-
gram of each cambrian lattice of type Bn is combinatorially equivalent to the 1-skeleton
of Asso(Bn) [22, Theorem 1.3]. The permutahedron Perm(Bn) of type Bn is the convex
hull of the points

M(σ ) = (σ (1), σ (2), . . . , σ (2n)) ∈ R2n, ∀σ ∈ Wn ⊂ S2n.

The next two propositions show that the realizations of the cyclohedron given in Theo-
rem 1.5 have similar properties as the ones of the associahedron given in Theorem 1.1:
They are obtained by removing certain inequalities from the inequalities for Perm(Bn)

and the common vertices Asso(Bn) and Perm(Bn) are characterized in many ways.

Proposition 1.6. Fix an orientation B . The associahedron Asso(Bn) of Theorem 1.5
is given by a subset of the inequalities for the permutahedron Perm(Bn−1). These in-
equalities are determined by the image under KB of the diagonals of the (2n + 2)-gon
labelled according to B .

Proposition 1.7. Fix an orientation B on Bn and let T ∈ T2n+2 be centrally symmetric
and σ ∈ Wn ⊂ S2n . The following statements are equivalent:

(a) MB (T ) = M(σ ).
(b) �B

B (σ ) = T and the diagonals of T can be labelled such that

∅ ⊂ KA (D1) ⊂ · · · ⊂ KA (D2n−1) ⊂ [2n]

is a sequence of strictly increasing nested sets.
(c) (�B

B )
−1(T ) = {σ }.

(d) �B
B (σ ) = T and for each i ∈ [2n] we have pT

	 (i) = 1 or pT
r (i) = 1.

The proofs are given in Section 3.
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1.3. Concerning the Proofs

The general idea to prove these results is to follow Loday’s strategy: We start with a
classical H-representation of Perm(An−1), i.e. a representation by (in)equalities. Then
we identify among all defining inequalities the A -admissible ones. These are in bijection
to the diagonals of the labelled (n + 2)-gon and are precisely the inequalities of an H-
representation of Asso(An−1). Finally, we show that the intersection of all A -admissible
half spaces whose diagonals define a triangulation T ∈ Tn+2 is the point MA (T ). The
process of removing the non-admissible hyperplanes is visualized in Figs. 6 and 7. The
facets supported by non-admissible inequalities are shaded.

In his proof, Loday used two vital tools: A precise description of the admissible half
spaces given by Stasheff [28, Appendix], and the fact that any planar binary tree can be
cut into two planar binary trees. The latter piece of information gives rise to an inductive
argument.

In Section 2 we generalize Stasheff’s H-representation of Asso(An−1) for all orienta-
tions of An−1, using results of Reading [22]. However, the induction of Loday does not
generalize to our set-up. We give a different proof that uses bistellar flips on triangulations
(i.e. flips of diagonals).

The permutahedron Perm(Bn) of type B can be obtained by intersecting the per-
mutahedron Perm(A2n−1) with “type-B hyperplanes”. If the orientation A of A2n−1 is
symmetric, we conclude that the following diagram is commutative:

Asso(A2n−1)

�

�������������

�
��������������

Perm(A2n−1)

�

�������������� Asso(Bn)

�
�������������

Perm(Bn)

The symbol � indicates that we intersect the starting polytope with all non-admissible
half spaces, and the symbol � indicates that we intersect the starting polytope with the
“type-B hyperplanes”. This gives the general idea of the proof for type B.

2. H-Representations of the Associahedron and Proofs for Section 1.1

We start with a classical H-representation of the permutahedron Perm(An−1)with vertex
set {M(σ ) | σ ∈ Sn}, see Fig. 8 for Perm(A2). Firstly, we consider the hyperplane

H =
{

x ∈ Rn |
∑
i∈[n]

xi = n(n + 1)

2

}
.
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Fig. 6. The facets that correspond to non-admissible inequalities for the symmetric orientation A of Fig. 2
(left associahedron) are shaded. The four pictures show the process of removing these hyperplanes from the
A3-permutahedron (upper left) to the associahedron (bottom right).

Fig. 7. The facets that correspond to non-admissible inequalities for the non-symmetric orientation A of
Fig. 2 (right associahedron) are shaded (the perspective has changed by roughly 90◦ with respect to the vertical
direction for a better visualization). The four pictures show the process of removing these hyperplanes from
the A3-permutahedron (upper left) to the associahedron (bottom right).
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M(123) = (1; 2; 3)

M(132) = (1; 3; 2)
M(231) = (2; 3; 1)

M(321) = (3; 2; 1)

M(312) = (3; 1; 2)M(213) = (2; 1; 3)

f1g

f2g

f3g

f1; 2g

f1; 3g

f2; 3g

x1

x2

x3

Fig. 8. The convex hull of {M(σ ) | σ ∈ S3} yields a two-dimensional permutahedron in R3 contained in the
affine hyperplane H with x1+ x2+ x3 = 6. The intersections H ∩ HK for∅ ⊂ K ⊂ [n] are the lines defined
by the edges of Perm(A2). The edges are labelled by the set K .

Secondly, each non-empty proper subset K ⊂ [n] with k := |K | defines the closed half
space

H K :=
{

x ∈ Rn | (n − k)
∑
i∈K

xi − k
∑

i∈[n]\K
xi + nk(n − k)

2
≥ 0

}
.

The open half space H +
K and the hyperplane HK are defined by strict inequality and

equality respectively. The negative half space H −
K is the complement of H K in Rn .

Now the permutahedron can be described as

Perm(An−1) = H ∩
⋂

∅�=K⊂[n]

H K .

Moreover, M(σ ) ∈ HK if and only if σ−1([|K |]) = K , see for instance Section 2.2
of [17]. In other words,

{M(σ )} = H ∩
⋂

∅�=K⊂[n]
K=σ−1([|K |])

HK . (1)

Let P be the (n + 2)-gon labelled according to a given orientation A of An−1. We
now describe an injective map KA from the set of diagonals of P to the set of non-
empty proper subsets of [n]. Set DA := DA ∪ {0, n + 1}. For a diagonal D = {a, b},
0 ≤ a < b ≤ n + 1, we define

KA (D) :=


{i ∈ DA | a < i < b} if a, b ∈ DA ,

{i ∈ DA | a < i} ∪ {i ∈ UA | b ≤ i} if a ∈ DA , b ∈ UA ,

DA ∪ {i ∈ UA | i ≤ a or b ≤ i} if a, b ∈ UA ,

{i ∈ DA | b > i} ∪ {i ∈ UA | a ≥ i} if a ∈ UA , b ∈ DA .

In other words, KA (D) is the subset of [n] obtained by reading counterclockwise the
labels of P starting from a and ending with b, and by removing 0, n+1, and {a, b}∩DA .
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Definition 2.1. Fix an orientation A of An−1. The half space H K is A -admissible if
there is a diagonal D of P such that K = KA (D).

For instance, the A -admissible half-spaces for the symmetric orientation A correspond-
ing to the realization on the left of Fig. 2 correspond to the subsets

{1}, {3}, {4}, {1, 2}, {1, 3}, {3, 4}, {1, 2, 3}, {1, 3, 4}, {2, 3, 4},

while the admissible half spaces of the other realization in Fig. 2 correspond to

{1}, {2}, {4}, {1, 2}, {1, 4}, {2, 3}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}.

We first prove a sequence of lemmas and corollaries to obtain, in Proposition 2.10,
a better understanding of the relationship between the points MA (T ) on the one hand
and H , HK , and H +

K on the other hand. The aim is to show that:

(1) MA (T ) is contained in H for every triangulation T .
(2) D is a diagonal of a triangulation T if and only if MA (T ) ∈ HKA (D).
(3) If D is not a diagonal of the triangulation T then MA (T ) ∈H +

KA (D)
.

We first show that certain half spaces are admissible for any orientation A of An−1.

Lemma 2.2. For any orientation A of An−1 the sets Su = {1, 2, . . . , u} for 1 ≤ u ≤
n − 1 and S̃v = {n, n − 1, . . . , n − v} for 0 ≤ v ≤ n − 2 yield A -admissible half
spaces H Su and H S̃v

.

Proof. Denote the elements of DA by i1 = 1 < i2 < · · · < iα = n and the elements
of UA by j1 < · · · < jβ . Let 1 ≤ u ≤ n−1. Let jk be the greatest integer in (Su∩UA )∪{0}
and let i	 be the greatest integer in (Su∩DA ). Observe that i	 < n since i	 ∈ Su . Therefore
jk < il+1 and the diagonal { jk, il+1} is mapped to Su under KA . Proceed similarly
with S̃v .

Both associahedra considered in Fig. 2 have a vertex (1, 2, 3, 4) and (4, 3, 2, 1). The
first vertex corresponds in both cases to the triangulation with diagonals {1}, {1, 2},
{1, 2, 3} and the second vertex corresponds in both cases to the triangulation with diago-
nals {4}, {4, 3}, {4, 3, 2}. This is true in general. More precisely, we have the following
corollary.

Corollary 2.3. For any orientation A of An−1 there are triangulations T and T̃ of the
labelled (n+2)-gon such that MA (T ) = (1, 2, . . . , n) and MA (T̃ ) = (n, n−1, . . . , 1).

Proof. The diagonals described in the proof of Lemma 2.2 to obtain the sets Su yield
a triangulation T with MA (T ) = (1, 2, . . . , n) and the diagonals for the sets S̃u yield a
triangulation T̃ with MA (T̃ ) = (n, n − 1, . . . , 1).

Definition 2.4. A triangulation T ∈ Tn+2 refines a given diagonal D if this diagonal D
is used in the triangulation T . We write T ≺ D in this situation.
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Lemma 2.5. Fix an orientation A on An−1.

1. There is a triangulation T ∈ Tn+2 with MA (T ) = (x1, . . . , xn) such that∑
i∈[n]

xi = n(n + 1)

2
.

2. For each diagonal D with d := |KA (D)|, there is a triangulation T ∈ Tn+2

refining D with MA (T ) = (x1, . . . , xn) such that∑
i∈KA (D)

xi = d(d + 1)

2
.

Proof. Denote the elements of DA by i0 = 0 < i1 = 1 < i2 < · · · < iα−1 < iα = n <
iα+1 = n + 1 and the elements of UA by j1 < j2 < · · · < jβ . Observe that α + β = n.

1. The triangulations T and T̃ of Corollary 2.3 have the desired property.
2. We have to distinguish four cases. The aim is to produce a permutation σ ∈ Sn such

that �A (σ ) refines a given diagonal D. The first d elements of σ−1 are precisely
the elements of KA (D), therefore it is sufficient to specify the first d elements
of σ−1. This is what we shall do.

(i) D = {a, b} with a, b ∈ DA and a < b.
Let u < v be such that iu = a and iv = b. Then the desired triangula-

tion is obtained from any permutation σ when σ−1 starts with the word
iu+1iu+2 · · · iv−1. More precisely, we have

xiu+1 = 1 · 1, xiu+2 = 2 · 1, . . . , xiv−1 = (v − 1− u) · 1 = d,

i.e.
∑

i∈KA (D)
xi = d(d + 1)/2.

(ii) D = {a, b} with a ∈ DA , b ∈ UA , and a < b.
Let u and v be such that iu = a and jv = b. Then any permutation σ

where σ−1 starts with iαiα−1 · · · iu+1 jβ jβ−1 · · · ju yields∑
i∈KA (D)

xi = d(d + 1)

2
.

(iii) D = {a, b} with a ∈ UA , b ∈ DA , and a < b.
Let u and v be such that iu = b and jv = a. Consider the coordinates

obtained from the triangulation associated to any permutation σ where σ−1

starts with the word i1i2 · · · iu−1 j1 j2 · · · jv .
(iv) D = {a, b} with a, b ∈ UA and a < b.

Let u and v be such that ju = a and jv = b. Let σ be any permutation
where σ−1 starts with the word i1i2 · · · iα j1 j2 · · · ju jβ jβ−1 · · · jv .

Let T ∈ Tn+2 a triangulation of the labelled (n+2)-gon P and let {a, c} be a diagonal
of T . There are two unique labels b, d of P such that {a, c} is a diagonal of the quadrilateral
given by the edges {a, b}, {b, c}, {c, d}, and {a, d} of T . Hence the diagonal {b, d} is not
an edge of T . The bistellar flip of the diagonal {a, c} is the transformation which maps T
to T ′ where T ′ ∈ Tn+2 is the triangulation obtained by replacing the diagonal {a, c} by
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the diagonal {b, d} in T . For two triangulations T, T ′ ∈ Tn+2, we write T ∼̇ T ′ if T ′ can
be obtained from T by a bistellar flip of a diagonal of T . The relation ∼̇ is symmetric.
Denote by ∼ the transitive and reflexive closure of ∼̇. For any T, T ′ ∈ Tn+2, there is a
sequence T = T1, T2, . . . , Tp = T ′ of triangulations in Tn+2 such that Ti ∼̇ Ti+1 for all
i ∈ [p − 1].

Lemma 2.6. Fix an orientation A on An−1. Let T ∈ Tn+2 and let D be a diagonal
of T . Consider the triangulation T ′ that is obtained from T by a bistellar flip from D
to D′. Set MA (T ) = (x1, . . . , xn) and MA (T ′) = (y1, . . . , yn). The vertices of the
quadrilateral with diagonals D and D′ are labelled a < b < c < d. Then xi = yi for
all i ∈ [n]\{b, c} and xb + xc = yb + yc.

Proof. It follows immediately from the definitions that xi = yi for all i ∈ [n]\{b, c}.
We have to show that xb + xc = yb + yc. There are four cases to distinguish: b and c are
elements of DA or UA .

(i) b, c ∈ DA .
We have µc(a) = µb(a)+ µc(b), µb(d) = µb(c)+ µc(d), and

µb(a)µb(c)+ µc(a)µc(d) = µb(a)µb(c)+ [µb(a)+ µc(b)]µc(d)

= µb(a)[µb(c)+ µc(d)]+ µc(b)µc(d)

= µb(a)µb(d)+ µc(b)µc(d).

If D = {a, c} and D′ = {b, d} we have xb + xc = µb(a)µb(c) + µc(a)µc(d)
and yb + yc = µb(a)µb(d) + µc(b)µc(d). If D = {b, d} and D′ = {a, c}
we have yb + yc = µb(a)µb(c) + µc(a)µc(d) and xb + xc = µb(a)µb(d) +
µc(b)µc(d).

(ii) b ∈ DA and c ∈ UA .
We have µc(a) = µc(b)− µb(a), µb(c) = µb(d)+ µc(d), and

µb(a)µb(d)+ n + 1− µc(a)µc(d)

= µb(a)µb(d)+ n + 1− [µc(b)− µb(a)]µc(d)

= µb(a)[µb(d)+ µc(d)]+ n + 1− µc(b)µc(d)

= µb(a)µb(c)+ n + 1− µc(b)µc(d).

We have either D = {a, d} and D′ = {b, c} or D = {b, c} and D′ = {a, d}.
Both cases imply xb + xc = yb + yc.

(iii) b ∈ UA and c ∈ DA .
We have µc(a) = µc(b)− µb(a), µb(c) = µb(d)+ µc(d), and

n + 1− µb(a)µb(d)+ µc(a)µc(d)

= n + 1− µb(a)µb(d)+ [µc(b)− µb(a)]µc(d)

= n + 1− µb(a)[µb(d)+ µc(d)]+ µc(b)µc(d)

= n + 1− µb(a)µb(c)+ µc(b)µc(d).

We have either D = {a, d} and D′ = {b, c} or D = {b, c} and D′ = {a, d}.
Both cases imply xb + xc = yb + yc.
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(iv) b, c ∈ UA .
We have µc(a) = µc(b)+ µb(a), µb(c) = µb(d)+ µc(d), and

n + 1− µb(a)µb(c)+ n + 1− µc(a)µc(d)

= n + 1− µb(a)µb(c)+ n + 1− [µc(b)+ µb(a)]µc(d)

= n + 1− µb(a)[µb(c)+ µc(d)]+ n + 1− µc(b)µc(d)

= n + 1− µb(a)µb(d)+ n + 1− µc(b)µc(d).

We have either D = {a, c} and D′ = {b, d} or D = {b, d} and D′ = {a, c}.
Both cases imply xb + xc = yb + yc.

Corollary 2.7. Fix an orientation A on An−1. Let T ∈ Tn+2 and write MA (T ) =
(x1, . . . , xn).

1.
∑

i∈[n] xi is invariant under bistellar flips of diagonals.
2. Let D and D′ be distinct diagonals of T , i.e. T refines both D and D′. Denote the

triangulation obtained from a bistellar flip of D′ by T ′ and MA (T ′) = (y1, . . . , yn).
Then ∑

i∈KA (D)

yi =
∑

i∈KA (D)

xi .

Proof. 1. Follows immediately from Lemma 2.6.
2. The claim follows immediately from the first statement of this lemma: Let a <

b < c < d be the labels that define the quadrilateral for the bistellar flip of D′. Since T
refines D and D′, we conclude that either b, c ∈ KA (D) or b, c �∈ KA (D).

A careful analysis of the proof of Lemma 2.6 yields the following result.

Corollary 2.8. Fix an orientation A on An−1. Let T ∈ Tn+2 and let D be a diagonal
of T . Consider the triangulation T ′ that is obtained from T by a bistellar flip from D
to D′. Set d = |KA (D)|, MA (T ) = (x1, . . . , xn), and MA (T ′) = (y1, . . . , yn). Then∑

i∈KA (D)

yi >
∑

i∈KA (D)

xi = d(d + 1)

2
.

Proof. Again, we have to consider the quadrilateral spanned by the diagonals D and D′,
its vertices are without loss of generality a < b < c < d. We only show the first case
b, c ∈ DA . The other cases are handled analogously. Suppose we flip from {a, c} to {b, d}.
Then b ∈ KA (D) and c �∈ KA (D). The claim follows from xb < yb as shown in the
proof of Lemma 2.6 since µb(c) < µb(d).

Lemma 2.9. Fix an orientation A on An−1. Let T ∈ Tn+2 and write MA (T ) =
(x1, . . . , xn). If T does not refine a given diagonal D with d := |KA (D)| then∑

i∈KA (D)

xi >
d(d + 1)

2
.
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Proof. Let u and v be the endpoints of D such that u < v. Since T does not refine D, we
have diagonals of T that intersect the line segment between u and v in its relative interior.
Let D1, . . . , Dt be all these diagonals ordered such that D ∩ Di+1 (as intersections of
line segments not as intersections of subsets of {0, . . . , n+1}) is closer to v than D∩Di

for all i ∈ [t − 1]. Let ui and vi denote the endpoints of Di where ui ∈ KA (D)
and vi �∈ KA (D) for each i ∈ [t].

The strategy is now to flip the diagonal D1, then D2, . . . , Dt to obtain a triangulation T ′

that refines D. We show by induction on t that
∑

i∈KA (D)
xi decreases with each flip.

We first remark that the special case t = 1 is covered by Corollary 2.8 (obtain a
triangulation T ′ that refines D by a bistellar flip from D1 to D).

Suppose the claim is true for all t̄ < t . Apply a bistellar flip to the diagonal D1 of
the quadrilateral {a < b < c < d} = {u, u1, v1, u2, v2} to obtain the triangulation T ′

with MA (T ′) = (y1, . . . , yn) and new diagonal D′1 (this is in fact a quadrilateral since
there is no other diagonal intersecting D between D1 and D2 i.e. u1 = u2 or v1 = v2).
In T ′, only D2, . . . , Dt intersect the line between u and v. We have

∑
i∈KA (D)

yi >

d(d + 1)/2 by induction, so it suffices to show
∑

i∈KA (D)
xi ≥

∑
i∈KA (D)

yi .
From D′1 ∩ D = {u} we conclude that one of the following statements is true:

(1) KA (D′1) ⊂ KA (D),
(2) KA (D′1) ⊃ KA (D),
(3) KA (D′1) ∩ KA (D) = ∅,
(4) u = c ∈ UA .

Observe first that Corollary 2.8 implies that
∑

i∈KA (D′1)
xi >

∑
i∈KA (D′1)

yi .
The first case implies that at least one of b and c is contained in KA (D) (possibly

both). From Lemma 2.6 we conclude
∑

i∈KA (D)
xi ≥

∑
i∈KA (D)

yi .
The second case implies that either none, one, or both of b, c are contained in KA (D).

If none or both are contained in KA (D), we have
∑

i∈KA (D)
xi =

∑
i∈KA (D)

yi . If one of
b, c is contained in KA (D), we have

∑
i∈KA (D)

xi >
∑

i∈KA (D)
yi by Lemma 2.6.

The third case implies that c = u and u ∈ DA , i.e. b, c �∈ KA (D). Hence we conclude∑
i∈KA (D)

xi =
∑

i∈KA (D)
yi by Lemma 2.6.

The fourth case implies that b, c are contained in KA (D), then we have
∑

i∈KA (D)
xi =∑

i∈KA (D)
yi by Lemma 2.6 again.

As a consequence we obtain the following result:

Proposition 2.10. Fix an orientation A on An−1, let T ∈ Tn+2, and let D be a diagonal.
Then

(1) MA (T ) ∈ H ,
(2) T ≺ D if and only if MA (T ) ∈ HKA (D),
(3) MA (T ) ∈H +

KA (D)
if T does not refine D.

Proof. It is a well-known fact that any triangulation of a polygon can be transformed
into any other triangulation by a sequence of bistellar flips. If both triangulations have a
common diagonal, this sequence can be chosen such that this diagonal is common to all
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intermediate triangulations. These remarks combined with Lemma 2.5 and Corollary 2.7
settle the first two statements.

If T does not refine D, then write MA (T ) = (x1, . . . , xn) and d := |KA (D)|. As
MA (T ) ∈ H ,

(n − d)
∑

i∈KA (D)

xi − d
∑

i∈[n]\K
xi + nd(n − d)

2
= n

∑
i∈KA (D)

xi − nd(d + 1)

2
> 0

by Lemma 2.9. In other words, MA (T ) ∈H +
KA (D)

.

Corollary 2.11. Fix an orientation A on An−1 and let T ∈ Tn+2. Then

{MA (T )} = H ∩
⋂
D�T

HKA (D).

Proof. It is clear that dim(H∩⋂D�T HKA (D)) ≤ 0. However, this intersection contains
MA (T ) by Proposition 2.10.

Theorem 2.12. The intersection of all A -admissible half-spaces with H yields an
associahedron with vertex set {MA (T ), T ∈ Tn+2}.

Proof. We first observe that the intersection of all admissible half spaces defines a
bounded set in Rn . This follows from the following facts:

(1) From Lemma 2.2, Corollary 2.3, Proposition 2.10, and the H-representation of
Perm(An−1), we conclude that all half spaces H K that contain (1, 2, . . . , n) or
(n, n − 1, . . . , 1) on their boundary HK are admissible. The half spaces H K

that contain (1, 2, . . . , n) on their boundary intersect with H in a cone C with
apex (1, 2, , . . . , n) of dimension dim H . Similarly, the half spaces H K that
contain (n, n − 1, . . . , 1) in their boundary intersect with H in a cone C̃ with
apex (n, n − 1, . . . , 1) of dimension dim H . Since all these half spaces can be
partitioned into pairs H K and H [n]\K , where HK is parallel to H[n]\K and H K ⊃
H −

[n]\K , we conclude that the intersection C ∩ C̃ is a convex polytope.

(2) We intersect C ∩ C̃ with all remaining admissible half spaces to obtain a convex
polytope Q that contains Perm(An−1).

By Proposition 2.10, we know that the vertex set V (Q) contains the set {MA (T ) | T ∈
Tn+2} and each vertex in {MA (T ) | T ∈ Tn+2} is simple: it is contained in precisely
(n+2)−3 = n−1 facet defining hyperplanes and in the interior of all other admissible
half spaces. In particular, we conclude that each vertex of {MA (T ) | T ∈ Tn+2} is
connected to precisely (n − 1) vertices of {MA (T ) | T ∈ Tn+2} by an edge: replace a
defining hyperplane H1 of MA (T ) by the hyperplane H2 that corresponds to the diagonal
obtained from “flipping H1 in T ”. This implies that all vertices of Q are contained
in {MA (T ) | T ∈ Tn+2} since the 1-skeleton of a polytope is connected.

Thus Q is a simple polytope and its 1-skeleton is the flip graph of an (n + 2)-gon.
This implies that Q is an associahedron.
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2.1. Proof of Theorem 1.1, Proposition 1.3, and Proposition 1.4

Theorem 1.1 and Proposition 1.3 are immediate consequences of Theorem 2.12.

Proof of Proposition 1.4. (a)⇒ (b)Denote the diagonals of T by D1, . . . , Dn−1. From
(1), Statement (a), and Corollary 2.11 we have

H ∩
⋂

∅�=K⊂[n]
K=σ−1([|K |])

HK = {M(σ )} = {MA (T )} = H ∩
⋂
D�T

HKA (D).

Since M(σ ) �∈ HK if K ⊂ [n] and not of the type σ−1([r ]), 1 ≤ r ≤ n − 1, we may
assume that KA (Di ) = σ−1([i]), 1 ≤ i ≤ n − 1. In particular,

∅ ⊂ KA (D1) ⊂ · · · ⊂ KA (Dn−1) ⊂ [n]

is a strictly increasing nested sequence of sets.
To see �A (σ ) = T , we observe σ−1(1) = KA (D1), σ−1(r) = KA (Dr )\KA (Dr−1)

for 2 ≤ i ≤ n − 1, and σ−1(n) = [n]\KA (Dn−1). The construction for �A (σ ) yields
the diagonals Di and the boundary of P , in other words, �(σ) = T .
(b)⇒ (c) We trivially have {σ } ⊆ (�A )

−1(T ), so it remains to show (�A )
−1(T ) ⊆

{σ }.
Assume σ ′ ∈ Sn with �A (σ

′) = T and ∅ ⊂ KA (D1) ⊂ · · · ⊂ KA (Dn−1) ⊂ [n].
The (unique) singleton set KA (D1) = {r} must consist of a down element: Suppose
r ∈ KA (D1) is up, then r is an endpoint of D1, otherwise KA (D1) �= {r}. However,
if the other endpoint is > r (resp. < r ) then 1 ∈ KA (D1) (resp. n ∈ KA (D1)) which
also contradicts KA (D1) = {r}. The diagonal D1 must be obtained in the first step of
the construction of T from σ ′, that is, (σ ′)−1(1) = r , since r ∈ KA (Dj ) for j ≥ 2.
Now suppose, we have finished t steps in the construction for�A (σ

′) and the diagonals
used so far are D1, . . . , Dt . The nestedness of the KA (Di ) and the allowed steps in the
construction of�A (σ

′) force (σ ′)−1(t + 1) = KA (Dt+1)\KA (Dt ), i.e. (σ ′)−1(t + 1) is
uniquely determined. Hence σ ′ = σ by induction.
(c) ⇒ (d) Consider i ∈ [n] with pT

	 (i) > 1 and pT
r (i) > 1. Then 2 ≤ i ≤ n − 1.

Denote by u the label that realizes pT
	 (i) and by v the label that realizes pT

r (i). We
have u < i < v and Du := {u, i} and Dv := {i, v} are diagonals of T . These two
diagonals cut P into three uniquely determined δi -gons Pi , 1 ≤ i ≤ 3, such that P1 is
given by Du and the path between i and u on the boundary of P that uses only vertices
with labels ≤ i , P3 is given by Dv and the path between i and v on the boundary of P
that uses only vertices with labels ≥ i , and P2 is given by Du , Dv , and all edges of P
not used by P1 or P3. The diagonals of T different from Du and Dv are a diagonal of
precisely one of the polygons P1, P2, or P3, so we have induced triangulations Ti of Pi .
See Fig. 9 for an example of this situation.

Assume that i ∈ DA . There is a (not necessarily unique) permutation σ ′ ∈ Sn

with (σ ′)−1 = λ1 · · · λδ1−2µ1 · · ·µδ3−2ν1 · · · νδ2−2 such that the λi generate P1 and its
triangulation T1, the µi generate P3 and its triangulation T3, and the ν1 generate the
diagonals of T2 and the path between u and v on the boundary of P that does not
contain i . However, the permutation σ ′′ with (σ ′′)−1 = µ1 · · ·µδ3−2λ1 · · · λδ1−2ν1 · · · νδ2

satisfies �A (σ
′′) = T and σ ′ �= σ ′′, that is, (�A )

−1(T ) is not a singleton set.
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Fig. 9. A triangulation T of a labelled heptagon with p	(3) = 3 and pr (3) = 2. The polygons P1, P2, and
P3 have vertex set {0, 1, 2, 3}, {2, 3, 4, 6}, and {3, 5, 6}. In this case, σ ′ ∈ S5 is given by (σ ′)−1 = 21534,
while σ ′′ is given by 52134.

The case i ∈ UA is handled similarly: Using the same convention for λi , µi ,
and νi as in the preceding case, we find a permutation σ ′ with inverse (σ ′)−1 =
ν1 · · · νδ2−2µ1 · · ·µδ3−2λ1 · · · λδ1−2 which yields T . The permutation σ ′′ given by
(σ ′′)−1=ν1 · · · νδ2−2λ1 · · · λδ1−2µ1 · · ·µδ3−2 is different from σ ′ and satisfies�A (σ

′′)=
T .
(d)⇒ (a)We have to prove that xσ−1(i) = i , for all i ∈ [n]. Observe that σ−1(1)must

be a down element since pT
	 (σ

−1(1)) or pT
r (σ

−1(1)) = 1 and 1, n are down elements.
Therefore pT

	 (σ
−1(1)) = pT

r (σ
−1(1)) = 1 and xσ−1(1) = 1.

We first prove by induction on i > 1 that the following assertions are true if pT
	 (i) = 1

or pT
r (i) = 1.

(i) Only one diagonal Di = {ui , vi } (ui < vi ) is added at the step i of the construc-
tion of �A (σ ).

(ii) The set {D1, . . . , Di } defines a triangulation Ti in Ti+2. The set of vertices of
this triangulation is then {σ−1(k) | uk, vk, k ∈ [i]}.

(iii) {σ−1(k) | k ∈ [i]} = KA (Di ).

The case k = 1 follows from the fact that σ−1(1) is a down element. Assume now that
these statements are true for any k ∈ [i − 1].

If σ−1(i) ∈ DA , then assertion (i) holds by definition. Statement (ii) follows from (c)
and by induction (assertion (ii)), while statement (iii) follows from statement (ii) and by
induction (assertion (iii)).

Suppose now that σ−1(i) ∈ UA . As pT
	 (σ

−1(i)) or pT
r (σ

−1(i)) = 1 and by induction
(assertion (ii)), we have to add σ−1(i) to the path constructed at the step i − 1 between
the vertices of Di−1, and one of these vertices is either a vertex preceding σ−1(i) or
a vertex following σ−1(i) in the labelled (n + 2)-gon. Statements (i)–(iii) now follow
easily from this discussion.

We now finish the proof: From Lemma 2.5, Corollary 2.7, and statement (iii) we have∑
k∈[i] xσ−1(k) = i(i + 1)/2 for all i ∈ [n]. Therefore, for i > 1,

xσ−1(i) =
∑
k∈[i]

xσ−1(k) −
∑

k∈[i−1]

xσ−1(k) = i.
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3. The Cyclohedron and Proofs for Section 1.2

In this section B is an orientation of Bn or equivalently an asymmetric orientation
of A2n−1.

The convex hull of {M(σ ) | σ ∈ Wn} is called permutahedron Perm(Bn) of type B.
It is well known that its vertex set is {M(σ ) | σ ∈ Wn}. We start this section with an
H-representation of Perm(Bn). For each i ∈ [n] we consider the hyperplane

H B
i = {x ∈ R2n | xi + x2n+1−i = 2n + 1}.

Such a hyperplane is called a type-B hyperplane. Observe that H ∩⋂i∈[n] H B
i = H ∩⋂

i∈[n−1] H B
i . We claim that

Perm(Bn) =
⋂
i∈[n]

H B
i ∩

⋂
∅�=K⊂[n]

H K = Perm(A2n−1) ∩
⋂

i∈[n−1]

H B
i .

We certainly have

Perm(Bn) ⊆ Perm(A2n−1) ∩
⋂

i∈[n−1]

H B
i .

Suppose that v �∈ {M(σ ) | σ ∈ Wn} is a vertex of Perm(A2n−1) ∩
⋂

i∈[n−1] H B
i . Then v

must be contained in the relative interior of an edge of Perm(A2n−1)which is not entirely
contained in

⋂
i∈[n] H B

i , that is,

v = (v1, . . . , v2n) = λM(σ1)+ (1− λ)M(σ2)

for 0 < λ < 1 and σ1, σ2 ∈ S2n\Wn with σ1 = τiσ2 and i ∈ [2n]\{n}. If i < n, then there
is an index j ∈ [n]\{i, i+1} (if i > n+1 there is an index j ∈ [n]\{2n+1−i, 2n+2−i})
such thatσ1( j)+σ1(2n+1− j) �= 2n+1. Now vj+v2n+1− j �= 2n+1 sinceσ1( j) = σ2( j)
and σ1(2n + 1− j) = σ2(2n + 1− j). We conclude

Perm(Bn) = conv{(σ (1), . . . , σ (2n)) | σ ∈ Wn ⊂ S2n} = Perm(A2n−1) ∩
⋂

i∈[n−1]

H B
i .

Lemma 3.1. Let T ∈ T2n+2. Then T ∈ T B
2n+2 if and only if MB (T ) ∈ H B

i for all
i ∈ [n − 1].

Proof. We start with a fundamental observation for any orientation B of Bn . As B is
a symmetric orientation of A 2n−1, we have

i ∈ DB \{1, 2n} if and only if 2n + 1− i ∈ UB for all i ∈ [2n − 1]\{1}.
A centrally symmetric triangulation T yields therefore ωi = ω2n+1−i , or equivalently,
xi + x2n+1−i = 2n + 1 for all i ∈ {2, . . . , 2n − 1}. Thus MB (T ) ∈ H B

i for any
i ∈ {2, . . . , n}. From MB (T ) ∈ H it follows that x1 + x2n = 2n + 1.

We now aim for the converse, i.e. consider a triangulation T of a (2n+2)-gon P with
MB (T ) ∈ H B

i for all i ∈ [n − 1]. As MB (T ) ∈ H ∩⋂i∈[n−1] H B
i , we conclude that

MB (T ) ∈ H B
n .
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Let us consider a regular realization of the (2n+2)-polygon P labelled according to B
and agree on the following terminology: Two labels i and j are centrally symmetric if the
vertices of P labelled i and j are centrally symmetric. If we consider a triangulation T
of P then the notion easily extends to edges and triangles. The fundamental observation
can now be phrased as label i is centrally symmetric to label 2n+1−i for i ∈ [2n]\{1, 2n}.
Moreover, label 1 is centrally symmetric to label 2n+1 and label 0 is centrally symmetric
to label 2n.

We therefore suppose ωi = ω2n+1−i for i ∈ [n]\{1} and ω1 + ω2n = 2n + 1 since
MB (T ) ∈ H B

i for all i ∈ [n].
Choose labels ai and bi such that µi (ai ) = pT

	 (i) and µi (bi ) = pT
r (i) for all labels

i ∈ [2n]. It is easy to see that �i := {ai , i, bi } is a triangle used by T to triangulate P .
As ai < i < bi , two triangles �i and �j coincide if and only if i = j . Since T consists
of 2n distinct triangles, the triangles �i are precisely the triangles used by T . In other
words, {�i | i ∈ [2n]} determines the triangulation T .

We now show by induction on k ∈ [n] that �k is centrally symmetric to �2n+1−i .
This concludes the proof since T is a centrally symmetric triangulation of P if and only
if �i and �2n+1−i are centrally symmetric for all i .

If k = 1 then a1 = 0 and b2n = 2n + 1. This implies

µ1(b1) = ω1 = 2n + 1− ω2n = 2n + 1− µ2n(a2n).

Therefore the edge {a2n, 2n + 1} ∈ T and {1, b1} ∈ T are centrally symmetric. Hence
the triangles �1 and �2n are centrally symmetric.

Suppose the induction hypothesis is true for i ∈ [k] where 1 < k < n. If ak+1 does not
precede k+1 then {ak+1, k+1}must be a diagonal of T , i.e. an edge of the triangles�k+1

and�β for some β = k+1. We conclude from ak+1 < k+1 that k+1 = bβ or β = ak+1.
Both cases imply β ≤ k. In other words, there is β ∈ [k] such that {ak+1, k + 1} is an
edge of �β or ak+1 precedes k + 1.

In the first caseµk+1(ak+1) = µ2n−k(b2n−k) =: p since�β and�2n+1−β are centrally
symmetric by induction. Hence

µk+1(bk+1) = ωk+1

p
= ω2n−k

p
= µ2n−k(a2n−k).

Thus �k+1 and �2n−k are centrally symmetric.
In the second case the symmetry of �k and �2n+1−k implies that the label b2n−k

succeeds the label 2n − k. Again, �k+1 and �2n−k are centrally symmetric.

Proposition 3.2. Let B be an orientation of the Coxeter graph Bn−1.

1. For T ∈ T B
2n+2 we have

{MB (T )} = H ∩
⋂
D�T

HKB (D) ∩
⋂

i∈[n−1]

H B
i .

2. The intersection of the hyperplane H , the type-B hyperplanes H B
i , i ∈ [n − 1],

and the B -admissible half spaces H K is an H-representation of the cyclohe-
dron Asso(Bn). In particular, the permutahedron Perm(Bn) is contained in the
cyclohedron Asso(Bn) which is contained in the associahedron Asso(An−1).
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Proof. 1. This follows from Lemma 3.1 and Corollary 2.11.
2. We first observe that the intersection of all admissible half spaces and of all type-B

hyperplanes defines a bounded set inR2n . This follows immediately from Theorem 2.12.
The intersection of all those admissible hyperplanes with H yields therefore a bounded
n-dimensional convex polytope.

The first part, Corollary 2.11, Theorem 2.12, and Lemma 3.1 show that the set of
vertices of this polytope is {MB (T ), T ∈ T B

2n+2} and that this convex polytope is simple:
each vertex is contained in precisely 2n − 1− (n − 1) = n facet defining hyperplanes.

A centrally bistellar flip in a centrally symmetric triangulation is a succession of at
most two bistellar flips: flip a diagonal together with its centrally symmetric flip. By 1,
the 1-skeleton of this polytope is the flip graph of the centrally symmetric triangulations
of a (2n+2)-gon: Two vertices “differ in precisely one centrally diagonal flip” if and only
if the vertices are connected by an edge. Therefore it is the 1-skeleton of the cyclohedron
[26, Theorem 1].

3.1. Proof of Theorem 1.5, Proposition 1.6, and Proposition 1.7

These statements follow immediately from Propositions 1.3, 1.4, and 3.2.

4. Remarks and Questions

4.1. On Normal Fans of These Realizations

Recall the following definition of a fan and some well-known facts about Coxeter groups.
A polyhedral cone is a non-empty set of vectors C ⊆ Rd such that the non-negative linear
combinations of any finite subset of vectors of C is an element of C and C is finitely
generated. A fan F in Rd is a finite family of polyhedral cones C1, . . . ,CN such that
every non-empty face of a cone in F is also a cone in F and the intersection of any
two cones is a face of both. A fan is complete if

⋃
F = C1 ∪ · · · ∪ CN is Rd . We shall

only consider complete cones, so we refer to a cone for simplicity. Let W be a finite
Coxeter group acting on a vector space V as a reflection group. The Coxeter fan of W
(relative to V ) is the fan created by the Coxeter (hyperplane) arrangement of W in V .
Choose a generic point in a maximal cone of the Coxeter fan, then the convex hull of the
orbit of this point under the action of W yields a permutahedron whose normal fan is the
Coxeter fan. Examples are the permutahedra Perm(An−1) and Perm(Bn) which are the
convex hulls of the Sn-orbit of (1, 2, . . . , n) and the Wn-orbit of (1, 2, . . . , 2n). Denote
byN (An−1) the normal fan of Perm(An−1). This fan is a Coxeter fan of type An−1 in H .

For each orientation A of An−1, the cambrian fan N (A ) associated to the orienta-
tion A is the fan obtained by gluing all maximal cones in N (An−1) that correspond to
permutations σ ∈ �−1

A (T ) for any given T ∈ Tn+2 [22]. Reading proved that this fan is
always simplicial. Moreover, he proved that the cambrian fan obtained from the left-to-
right and bipartite orientation is the normal fan of a realization of the associahedron. He
conjectured that this is true for any orientation of the Coxeter graphs of type A and B.

Reading explicitly described the rays ofN (A ) in Section 9 of [22]. This description
translates directly to a description of the admissible half spaces for a given orientation A .



540 C. Hohlweg and C. E. M. C. Lange

It is easy to see that this bijection extends to an isomorphism of the face lattice ofN (A )

and the normal fan of the associahedron obtained from A . Hence we obtain the following
proposition.

Proposition 4.1. Fix an orientation A on An−1. The normal fan of the realization of
Asso(An−1) associated to A is precisely the cambrian fan N (A ).

The normal fan of the type-B permutahedron Perm(Bn) lives inR2n∩H
⋂

i∈[n−1] H B
i

and is precisely

N (Bn) = N (A2n−1) ∩
⋂

i∈[n−1]

H B
i .

Let B be a symmetric orientation on A2n−1 or equivalently an orientation of Bn . From
Reading’s work (last sentence of [22]): the Cambrian fan NB(B ) of type Bn is given
from the corresponding cambrian fan N (B ) of type A2n−1 by the formula

NB(B ) = N (B ) ∩
⋂

i∈[n−1]

H B
i .

Hence we have the following corollary.

Corollary 4.2. Fix an orientation B on Bn . The normal fan of the realization of
Asso(Bn) associated to B is the cambrian fan NB(B ).

Remark 4.3. In Section 9 of [22], Reading proved in type An and Bn that the cambrian
fan corresponding to a bipartite orientation (i.e. i is a down element if and only if i+1 is an
up element) is linearly isomorphic to a cluster fan. The realization of the permutahedron
of type An or Bn used in this article fixes a geometric representation of the corresponding
Coxeter group. Let � be a crystallographic root system and let �+ be its set of positive
roots: the cluster fan associated to� is then the fan spanned by the almost positive roots
of � [11]. Hence, for a bipartite orientation, we have a realization of the associahedron
(or of the cyclohedron) whose normal fan is linearly isomorphic to a cluster fan, as in
[6] (see also Theorem 5.11 of [10]).

4.2. On Isometry Classes of These Realizations

We are starting here a study of the (affine) isometry classes of our realizations of
Asso(An−1). Some experiments with GAP [24] and polymake [12] show that these
realizations are not all isometric. Indeed, if two realizations are isometric, then they
necessarily have the same number of common vertices with Perm(An−1) but we shall
see that this condition is not sufficient. It would be interesting to classify the isometry
classes of these realizations in terms of “equivalence classes” on orientations of the
Coxeter graph An−1.

The simplest definition of such equivalence classes yields isometric realizations. Two
orientations A and A ′ of An−1 are equivalent if A is obtained from A ′ by reversing
the orientations of all edges. This implies UA = DA ′ \{1, n} and each equivalence class
consists of two orientations. The following result can be easily deduced from definitions:
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Proposition 4.4. Let A and A ′ be two orientations of An−1. If A and A ′ are equiva-
lent, then the isometric transformation (x1, . . . , xn)→ (n+ 1− x1, . . . , n+ 1− xn) on
R

n maps the realization of Asso(An−1) associated to A on the realization of Asso(An−1)

associated to A ′.

Each orientation is completely determined by its set of up indices. The following
table gives the number nA of common vertices of Perm(An−1) and Asso(An−1) for
each orientation A of An−1 for n ≤ 5 as well as the number IA of integer points
contained in the associahedron. The number nA can be either computed by GAP, with
an algorithm based on the cambrian congruences, and the equivalence between (a) and
(c) in Proposition 1.4 or by counting the vertices of the associahedron with coordinates
a permutation of (1, 2, . . . , n). The coordinates can be obtained for example by using
polymake, the numbers IA can be computed with the help of LattE [8]. Input data for
all examples is available at [15].

n = 3 n = 4 n = 5

UA ∅ {2} ∅ {2, 3} {2} {3} ∅ {2, 3, 4} {2} {3, 4} {4} {2, 3} {2, 4} {3}
nA 4 4 8 8 9 9 16 16 19 19 19 19 20 20
IA 8 8 55 55 60 60 567 567 672 672 672 672 742 742

For n = 5, {2} and {3, 4} form an equivalence class as well as {4} and {2, 3}. All these
up sets yield nA = 19, and the number of integer points they contain is 672.

We now consider the transitive closure of the following modification of the equiva-
lence of two orientations introduced above. This modified notion of equivalence yields
the equivalence classes ∅ and {2, 3, 4}; {2}, {3, 4}, {4}, and {2, 3}; and {2, 4} and {3}
in case of n = 5. Two orientations A and A ′ of A n−1 are equivalent if A is obtained
from A ′ by reversing the orientations of all edges or if the oriented graph A is ob-
tained from A ′ by a rotation of 180◦. The transitive closure of this modified notion
of equivalence suggests isometry classes for n = 6 that can be detected by IA but not
by nA :

n = 6

UA ∅ {2} {5} {2, 3} {3} {4} {2, 5} {2, 4}
{2, 3, 4, 5} {3, 4, 5} {2, 3, 4} {4, 5} {2, 4, 5} {2, 3, 5} {3, 4} {3, 5}

nA 32 39 39 42 42 42 44 45
IA 7958 10116 10116 11155 12294 12294 12310 13795

We believe that these equivalence classes can be characterized by the number of integer
lattice points contained in the corresponding realizations, and that such an equivalence
class consists precisely of isometric realizations. Moreover, viewing these polytopes
as generalized permutahedra as defined by Postnikov [21], it should be possible to
describe these realizations explicitly as a Minkowski sum (with possibly negative co-
efficients). Once such a Minkowski sum decomposition is determined for a given ori-
ented Coxeter graph, explicit formulae for the volume and number of integer points are
explicit.



542 C. Hohlweg and C. E. M. C. Lange

4.3. On Barycenters

In his article, Loday mentions (but does not prove) an observation made by Chapoton
that the vertices of the permutahedron and the associahedron of his realization have
the same barycenter: G = ((n + 1)/2, . . . , (n + 1)/2). We observed that for n ≤ 10
and any orientation A of An−1, the barycenter of the vertices of the realization of the
associahedron associated to A is G. This seems to be true for the cyclohedron, too,
as we computed all barycenters of cyclohedra up to dimension 5. This leads us to the
following question: Letting A be an orientation of An−1 and B be an orientation of Bn ,
is G the barycenter of conv{MA (T ), T ∈ Tn+2} and conv{MB (T ), T ∈ T B

2n+2}?
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software, http://www.math.tu-berlin.de/polymake.
13. I. Gel’fand, M. Kapranov, and A. Zelevinsky, Discriminants, Resultants, and Multidimensional Determi-
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