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Abstract. Consider the question: Given integers 0≤ k < d < n, does there exist a
simpled-polytope withn faces of dimensionk? We show that there exist numbersG(d, k)
and N(d, k) such that forn > N(d, k) the answer is yes if and only ifG(d, k) divides
n. Furthermore, a formula forG(d, k) is given, showing that, e.g.,G(d, k) = 1 if k ≥
b(d + 1)/2c or if both d andk are even, and also in some other cases (meaning that all
numbers beyondN(d, k) occur as the number ofk-faces of some simpled-polytope).

This question has previously been studied only for the case of vertices (k = 0), where
Lee [Le] proved the existence ofN(d,0) (with G(d,0) = 1 or 2 depending on whether
d is even or odd), and Prabhu [P1] showed thatN(d,0) ≤ cd

√
d. We show here that

asymptotically the true value of Prabhu’s constant isc = √2 if d is even, andc = 1 if d is
odd.

1. Introduction

An integern is called(d, k)-realizableif there is a simpled-polytope withn faces of
dimensionk. For terminology and basic properties of polytopes we refer to the literature,
see, e.g., [Z].

We show, see Theorem 7, that there exist numbersG(d, k) andN(d, k) such that

• if n is (d, k)-realizable, thenG(d, k) dividesn;
• if G(d, k) dividesn andn > N(d, k), thenn is (d, k)-realizable.

∗ This research was supported by EC Grant CHRX-CT93-0400 and by the Mathematical Sciences Research
Institute (Berkeley, CA).
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TheG(d, k)-divisible numbers that are not(d, k)-realizable are called(d, k)-gaps. Thus
there are only finitely many gaps for alld > k ≥ 0. In this paper we study the numbers
G(d, k) andN(d, k). Our proofs rely on theg-theorem.

To give some feeling for the results, we discuss a few special cases. The parity
restrictions that exist for each dimensionk are easiest to understand for the case of
vertices (k = 0). Namely, the graph of a simpled-polytope isd-regular, so if the
polytope hasn vertices, then it hasdn/2 edges. Hence, ifd is oddn must be even. This
is in fact the only constraint, and we have

G(d,0) =
{

1, d even,
2, d odd.

This result is due to Lee [Le], who initiated the study of properties of vertex-count
numbers of simple polytopes. Via the regular graph property this also implies the result
for edge-count numbers:

G(d,1) =


d

2
, d even,

d, d odd.

For 1 < k < b(d + 1)/2c the situation gets more complicated and the answer is
different fork even andk odd. For instance,

G(d,2) =
{

2, d ≡ 1 (mod 4),
1, otherwise.

The modulusG(d, k) can get arbitrarily large in this range; for instance,G(d, k) =
d − k + 1 wheneverk is odd andd − k + 1 is a prime. Then, fork ≥ b(d + 1)/2c,
the situation simplifies again toG(d, k) = 1. Theorem 2 gives the general formula for
G(d, k).

It is also of interest to study the magnitude of the numbersN(d, k) (defined as the
smallest possible ones for which the above statement is true). Again, this has been studied
for the case of vertices by Prabhu [P1], who showed thatN(d,0) ≤ cd

√
d. We prove

that asymptotically the true value of Prabhu’s constant isc = √2 if d is even, andc = 1
if d is odd, see Section 5. We also give an upper bound forN(d, k) in the general case,
Theorems 10 and 11, but leave open the determination of its true asymptotic growth.

2. Preliminaries

Given ad-dimensional polytopeP, we callf := ( f0, f1, . . . , fd−1) the f -vectorof P,
where fi is the number of faces of dimensioni .

For any integersn, s ≥ 1, there is a unique way of writing

n =
(

as

s

)
+
(

as−1

s− 1

)
+ · · · +

(
ai

i

)
,
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so thatas > as−1 > · · · > ai ≥ i ≥ 1. Then define

∂s(n) :=
(

as − 1

s− 1

)
+
(

as−1− 1

s− 2

)
+ · · · +

(
ai − 1

i − 1

)
.

Also let ∂s(0) := 0.
A nonnegative integer sequence(n0,n1,n2, . . .) is called anM-sequenceif

n0 = 1 and ∂s(ns) ≤ ns−1 for all s ≥ 1.

Two simple facts we need aboutM-sequences is that if there is a zero in the sequence,
then all the following entries are also zeros, and that any sequence satisfyingn0 = 1 and
n1 ≥ n2 ≥ n3 ≥ · · · is anM-sequence.

An alternative definition of anM-sequence, due to Macaulay and Stanley [S1], says
that a sequence is anM-sequence if and only if it is thef -vector of a multicomplex.
See [Li] and [Z] for examples of other interpretations ofM-sequences. Letbxc anddxe
denote the largest integer less than or equal tox and the smallest integer larger than or
equal tox, respectively.

Let δ := bd/2c and letMd = (mik) be the ((δ + 1)× d)-matrix with entries

mik =
(

d + 1− i

k+ 1

)
−
(

i

k+ 1

)
for 0≤ i ≤ δ, 0≤ k ≤ d − 1.

For example,

M10 =


11 55 165 330 462 462 330 165 55 11
9 45 120 210 252 210 120 45 10 1
7 35 84 126 126 84 36 9 1 0
5 25 55 70 56 28 8 1 0 0
3 15 31 34 21 7 1 0 0 0
1 5 10 10 5 1 0 0 0 0

 .

Our proofs rely on theg-theorem, conjectured by McMullen. Sufficiency was proved
by Billera and Lee [BL], and necessity by Stanley [S2] and later by McMullen [M], see
[Z]. We use the following matrix reformulation of theg-theorem, given by Bj¨orner [B1],
[B2], see also [Z]. We have here reformulated the statement from simplicial polytopes
to simple polytopes, which just corresponds to reading thef -vector backward.

Theorem 1(Theg-Theorem). The matrix equation

f = g · Md

gives a one-to-one correspondence between f -vectorsf of simple d-polytopes and M-
sequencesg= (g0, g1, . . . , gδ).

3. The ModulusG(d, k)

The modulus mentioned in the Introduction is defined as follows:

G(d, k) := gcd(m1,k,m2,k, . . . ,mδ,k), (1)
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the greatest common divisor for the elements in thekth column and below the top row
of the matrixMd. In this section we give simple and explicit formulas forG(d, k). The
role ofG(d, k) as the period for the possible numbers ofk-faces ofd-polytopes is shown
in the next section.

Theorem 2.

(i) If k ≥ b(d + 1)/2c, then G(d, k) = 1.
(ii) If k < b(d + 1)/2c is even, let e be the integer such that2e ≤ k + 1 < 2e+1.

Then

G(d, k) =
{

2 if d − k+ 1≡ 0 (mod 2e+1),
1 otherwise.

(iii) If k < b(d+ 1)/2c is odd, let p1, . . . , pt be the primes smaller than or equal to
k+ 1, and let ei ≥ 1 be the integers such that pei

i ≤ k+ 1< pei+1
i . Then

G(d, k) = d − k+ 1

gcd(d − k+ 1, pe1
1 pe2

2 · · · pet
t )
.

For the proof we need some facts about binomial coefficients modulo powers of
a prime, that are developed in a sequence of lemmas. Binomial coefficients modulo
prime powers have been much studied, see, e.g., [G] and the references therein, and the
following lemma (which summarizes the properties that we need) might be known. We
have however not been able to find it in the literature, so we include a proof.

Lemma 3. Let k,e≥ 0 and let p be a prime such that pe ≤ k + 1 < pe+1. Then for
all r ≥ 1 we have

(i) d ≡ d′(modpe+r ) implies(
d

k+ 1

)
≡
(

d′

k+ 1

)
(modpr );

(ii) (
pe+r + k− i

k+ 1

)
≡ (−1)k+1

(
i

k+ 1

)
(modpr ),

for all i = 0,1, . . . , pe+r + k;
(iii) the unique longest run of zeros in the period is

( d
k+1

) ≡pr 0 for all pe+r ≤ d ≤
pe+r + k.

Part (ii) shows that ifk is odd, then the period extended byk is symmetric(modpr ),
and ifk is even, then it is antisymmetric. The lemma is illustrated by the modular Pascal
triangle shown in Fig. 1.

For each primep define the valuationvp: Z\{0} → N by vp(n) = s, whereps is the
highest power ofp that is a divisor ofn. We frequently use that

vp(n+m) = vp(n) if vp(n) < vp(m); (2)

in particular,vp(n+ px) = vp(n) if |n| < px.
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Fig. 1. Pascal’s triangle (mod 4).

Lemma 4. Let k, e, and p be as in Lemma3. Then

vp

[
(k+ 1)

(
k

j

)]
≤ e for all 0≤ j ≤ k.

Proof. The proof hinges on the following fact:Among all products of x≤ pe(p− 1)
consecutive integers in the interval1,2, . . . , pe+1−1 the maximum valuation is attained
by the string that starts with pe. To show this, assume thatr, r + 1, . . . , r + x − 1 is
such a string of integers. Ifr > pe, sayape < r ≤ (a+ 1)pe, then the string beginning
with r − ape has the same valuation. Thus we may assume thatr ≤ pe.

If r < pe, let s be the least number such thatr < s ≤ pe andvp(r ) < vp(s). Then it
is easy to see thatvp(r (r + 1) · · · (r + x − 1)) ≤ vp(s(s+ 1) · · · (s+ x − 1)), and the
claim follows.

We may assume thatj ≤ k/2. Then j + 1 ≤ pe(p− 1), and what was just shown
implies thatvp((k − j + 1)(k − j + 2) · · · (k + 1)) ≤ vp(pe(pe+ 1) · · · (pe+ j )) =
e+ vp( j !), which is equivalent to the stated formula.

Proof of Lemma3. We know from Pascal’s triangle that
( d

k+1

)
(modpr ) is completely

determined by the values of
( j

0

) = 1, j ≥ 0, and
(d′+i

i

)
(modpr ) for anyd′ ≥ 0 and all
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i = 1, . . . , k+ 1. Therefore it suffices to show that(
pe+r − 1+ i

i

)
≡pr 0, (3)

for all i = 1, . . . , pe+1 − 1, to establish the first part of the lemma. We have that
vp(pe+r + s) = vp(s) for all s = 1, . . . , pe+r − 1. So the expansion of the binomial
coefficient (

pe+r − 1+ i

i

)
= (pe+r + i − 1)(pe+r + i − 2) · · · pe+r

i (i − 1)(i − 2) · · ·2 · 1
gives

vp

((
pe+r − 1+ i

i

))
= e+ r − vp(i ) ≥ r,

if i < pe+1, which proves (3).
The second part of the lemma is obvious when 0≤ i ≤ k, since both sides are zero

(for the left-hand side this follows from (i)). Therefore, assume thatk < i < pe+r . For
each j 6= 0 write j = pmin{vp( j ),e}qj . Then, for 0< j < pe+r ,

qpe+r− j ≡pr q− j = −qj . (4)

We have the equality(
i

k+ 1

)
(k+ 1)!

pvp((k+1)!)
= i (i − 1) · · · (i − k)

pvp((k+1)!)

= p6
k
j=0 min{vp(i− j ),e}−vp((k+1)!)

k∏
j=0

qi− j

= pα
k∏

j=0

qi− j ,

and similarly(
pe+r + k− i

k+ 1

)
(k+ 1)!

pvp((k+1)!)
= (pe+r − i )(pe+r − i + 1) · · · (pe+r − i + k)

pvp((k+1)!)

= p6
k
j=0 min{vp(pe+r−(i− j )),e}−vp((k+1)!)

k∏
j=0

qpe+r−(i− j )

= pβ
k∏

j=0

qpe+r−(i− j ).

We claim that

β = α ≥ 0.



The Number ofk-Faces of a Simpled-Polytope 7

The equality follows from (2), and the inequality will soon be proved. The two identities
therefore give, using (4),(

i

k+ 1

)
(k+ 1)!

pvp((k+1)!)
≡pr (−1)k+1

(
pe+r + k− i

k+ 1

)
(k+ 1)!

pvp((k+1)!)
.

Since(k+ 1)!/pvp((k+1)!) is invertible inZpr this implies (ii).
It remains to show thatα ≥ 0. If vp(i − j ) ≤ e for all j = 0, . . . , k, then

α = vp

((
i

k+ 1

))
≥ 0.

If not, then sincek + 1 < pe+1 there is exactly ones, with i − k ≤ s ≤ i , such that
vp(s) > e. In that case we have

α + vp((k+ 1)!) = vp((i − k) · · · s · · · i )− vp(s)+ e

= vp((i − k) · · · (s− 1))+ vp((s+ 1) · · · i )+ e

= vp((s− (i − k))!)+ vp((i − s)!)+ e,

where the last equality uses (2) twice. Thus, using Lemma 4,

α = −vp((k− (i − s)+ 1)(k− (i − s)+ 2) · · · (k+ 1))+ vp((i − s)!)+ e

= −vp

(
(k+ 1)

(
k

i − s

))
+ e≥ 0.

To prove (iii) assume that (
d + i

k+ 1

)
≡pr 0,

for somed ≥ k+ 1 and alli = 0, . . . , k. Then(
d

j

)
≡pr 0,

for j = 1, . . . , k+ 1. Especially, (
d

ps

)
≡pr 0

for 0≤ s ≤ e, which gives that

vp

((
d

ps

))
≥ r.

In particular,vp(d) ≥ r . We now show thatvp(d) ≥ r +s for all 0≤ s ≤ e, by induction
ons. Assume thatvp(d) ≥ r + s− 1. Then

r ≤ vp

((
d

ps

))
= vp(d(d − 1) · · · (d − (ps − 1)))− vp(1 · 2 · · · (ps − 1)ps)

= vp(d)+ vp((p
s − 1)!)− vp((p

s − 1)!)− vp(p
s) = vp(d)− s.
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Hence, a run ofk + 1 consecutive zeros must begin with
( d

k+1

)
for somed divisible

by pe+r . On the other hand, the ones along the left boundary of Pascal’s triangle show
that there cannot be a run of more thank + 1 zeros of the form

( i
k+1

)
. This proves the

lemma.

We can now proceed toward the proof of Theorem 2.

Lemma 5. For each k< b(d + 1)/2c, G(d, k) is a divisor of

d − k+ 1

gcd(d − k+ 1, pe1
1 pe2

2 · · · pet
t )
,

where p1, . . . , pt are the primes≤ k+ 1 and pei
i ≤ k+ 1< pei+1

i .

Proof. Take a primep dividing G(d, k) and letx := vp(G(d, k)) ≥ 1. Writek+ 1 in
basep, k+ 1= k0+ k1 p+ · · · + kepe, where 0≤ ki < p andke 6= 0. Notice that

vp

(
d−k+1

gcd(d−k+1, pe1
1 pe2

2 · · · pet
t )

)
=
{
vp(d−k+1)−e if vp(d−k+1) ≥ e,
0 otherwise,

so it will suffice to show thatvp(d − k + 1) − e ≥ x in the first case and obtain a
contradiction in the second.

Sincepx|G(d, k) we get that(
d + 1− i

k+ 1

)
≡px

(
i

k+ 1

)
,

for all i = 1, . . . , δ. Especially we must have(
d + 1− i

k+ 1

)
≡px 0, for i = 1, . . . , k, and

(
d − k

k+ 1

)
≡px 1.

From

(d − 2k)

(
d + 1− k

k+ 1

)
=
(

d − k

k+ 1

)
(d − k+ 1),

we get

vp(d − k+ 1)− vp(d − 2k) = vp

((
d + 1− k

k+ 1

))
≥ x ≥ 1.

Hence by (2),vp(k+ 1) = vp(d − k+ 1− (d − 2k)) = vp(d − 2k) < vp(d − k+ 1).
There are now two cases: First assume thatvp(d − k + 1) ≥ e. If k + 1 = kepe

we are done, since we have shown thatvp(d − k + 1) − vp(k + 1) ≥ x. Assume that
k+1> kepe. Fromd−k+1≥ k+1> kepe we conclude thatvp(d−k+1−kepe) ≥ e,
which impliesvp(d− k+ 1− kepe− i ) = vp(i ), for all i = 1, . . . , k+ 1− kepe < pe.
This in turn implies that

vp

(
(d − k− kepe)!

(d − 2k)!

)
= vp((k− kepe)!) = vp

(
(d + 1− kepe)!

(d + 1− k)!

)
.
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Using the equality

(d − k− kepe)!

(d − 2k)!

(
d + 1− kepe

k+ 1

)
=
(

d + 1− k

k+ 1

)
(d + 1− kepe)!

(d + 1− k)!
,

we get that

vp

((
d + 1− kepe

k+ 1

))
= vp

((
d + 1− k

k+ 1

))
.

This together with the identity

(d − k+ 1− kepe)

(
d + 2− kepe

k+ 1

)
=
(

d + 1− kepe

k+ 1

)
(d + 2− kepe)

gives

x ≤ vp(mke pe−1,k) = vp

((
d + 2− kepe

k+ 1

))
≤ vp

((
d + 1− kepe

k+ 1

))
− e+ vp(d + 2− kepe)

= vp

((
d − k+ 1

k+ 1

))
− e+ vp(k+ 1− kepe)

= vp(d − k+ 1)− e.

Here the last equality comes fromvp(k+ 1− kepe) = vp(k+ 1) = vp(d − 2k) and

vp

((
d − k+ 1

k+ 1

))
= vp(d − k+ 1)− vp(d − 2k),

established above.
The second case is ifa := vp(d − k + 1) < e. The same argument can be applied

again; however, now replacingkepe everywhere byka pa + · · · + kepe and replacinge
by a. We then getx ≤ vp(d − k+ 1)− a = 0, a contradiction.

Lemma 6. G(d, k) is a divisor of m0,k =
(d+1

k+1

)
.

Proof. If for a prime p we have thatpr dividesG(d, k) and pe ≤ k+ 1< pe+1, then
Lemma 5 implies thatpr+e dividesd − k+ 1. Hence

vp

((
d + 1

k+ 1

))
= vp

((
d + 1

k

))
+ vp(d − k+ 1)− vp(k+ 1) ≥ r.

Proof of Theorem2. The first statement follows from the fact thatmd−k,k = 1 for
k ≥ b(d + 1)/2c.
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Let k < b(d+ 1)/2c. We have from the definition ofmi,k that, for every primep and
everyr ≥ 1,

pr |G(d, k) ⇔
(

d + 1− i

k+ 1

)
≡pr

(
i

k+ 1

)
, for i = 0,1, . . . ,

⌊
d + 1

2

⌋
. (5)

Actually, the definition supports this only fori = 1, . . . , δ = bd/2c on the right-hand
side, buti = 0 can be added because of Lemma 6 andi = b(d+1)/2c (for d odd) gives
a trivially true identity.

Case1: k even. Assume thatG(d, k) 6= 1, and thatpr |G(d, k). Since by Lemma 3 there
is a unique longest run ofk+ 1 zeros in the period of

( i
k+1

)
(modpe+r ) we get from (5)

thatd − k+ 1≡pe+r 0. Therefore, Lemma 3 and (5) give(
k+ 1

k+ 1

)
≡pr

(
d − k

k+ 1

)
≡pr

(
pe+r − 1

k+ 1

)
≡pr −

(
k+ 1

k+ 1

)
,

which impliesp = 2 andr = 1. Hence,G(d, k) = 2, and this happens only ifd − k+
1≡2e+1 0. On the other hand, ifd−k+1≡2e+1 0, then 2|G(d, k) can be concluded from
Lemma 3 and (5).

Case2: k odd. Let pr be a divisor of(d − k + 1)/gcd(d − k+ 1, pe1
1 pe2

2 · · · pet
t ). By

Lemma 5 it suffices to show thatpr |G(d, k). The assumption implies thatpr+e divides
d − k+ 1, where as usuale is defined bype ≤ k+ 1< pe+1. Hence by Lemma 3(

d + 1− i

k+ 1

)
≡pr

(
i

k+ 1

)
, for all i = 0, . . . ,d + 1,

which via (5) shows thatpr |G(d, k).
This finishes the proof of the theorem.

Example. We want to calculateG(116,9). Sincek = 9 is odd we calculate the greatest
common divisor of 116−9+1= 108 and 23 ·32 ·5 ·7 which is 36. We getG(116,9) =
108/36= 3.

4. Periodicity of (d, k)-Realizable Numbers

We now show the general theorem about the ultimately stable periodic distribution of
the(d, k)-realizable numbers.

Theorem 7. Fix 0 ≤ k < d, and let G(d, k) be the number defined in(1). Then there
exists an integer N such that, for all n > N,

n is the number of k-faces of a simple d-polytope⇔ n ≡ 0 (modG(d, k)).

Proof. We prove the theorem with the last statement replaced byn ≡
m0,k (modG(d, k)). Lemma 6 shows thatm0,k is divisible by G(d, k), so this refor-
mulation is equivalent.
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(⇒) This direction is clear from Theorem 1.
(⇐) Write

G(d, k) =
δ∑

i=1

λi mi,k, λi ∈ Z.

Supposem1,k = C · G(d, k). Define

gδ :=
{
(C − 1)|λδ| if λδ < 0,
0, otherwise;

and recursively

gi := gi+1+ (C − 1)(|λi | + |λi+1|), 0< i < δ.

Let N := m0,k +
∑δ

i=1 gi mi,k, and letg(p)i = gi + pλi , for p = 0,1, . . ..
Theng(p,q) = (1, g(p)1 + q, g(p)2 , . . . , g(p)δ ) is nonnegative and decreasing after the

first entry for allq ≥ 0 and all 0≤ p < C, and hence is anM-sequence. Thefk values
corresponding to theseg-vectors are

f (p,q)k = N + qCG(d, k)+ pG(d, k).

It is clear from the construction that all numbersN + j · G(d, k), j = 0,1, . . ., are of
the form f (p,q)k for suitableq ≥ 0 and 0≤ p < C.

Corollary 8. If the mi,k are relatively prime, then all numbers from some point on
are (d, k)-realizable. Furthermore, Theorem2 shows that this happens precisely in the
following cases:

(i) if k ≥ b(d + 1)/2c;
(ii) if k < b(d + 1)/2c is even, unless d− k+ 1≡ 0 (mod 2e+1);

(iii) if k < b(d + 1)/2c is odd, unless d− k+ 1 fails to divide pe1
1 pe2

2 · · · pet
t .

Now defineN(d, k) to be the least numberN for which Theorem 7 is true. Note that
N(d,d − 1) = d, so in what follows we may assume thatk < d − 1.

What can be said about the magnitude ofN(d, k)? We here give a general upper
bound, and then we determine the exact asymptotic growth for the special caseN(d,0)
in the following section.

Define

L(d, k) := min
δ

max
i=1
|λi |,

with the minimum taken over all ways to representG(d, k) on the form

G(d, k) =
δ∑

i=1

λi mi,k, λi ∈ Z.

Lemma 9. For all 0≤ k ≤ d − 2, we have L(d, k) < m1,k.
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Proof. AssumeG(d, k) =∑δ
i=1 λi mi,k, with |λs| ≥ m1,k andms,k 6= 0. By symmetry

we may assume thatλs is positive, that isλs ≥ m1,k. SinceG(d, k) < m1,kms,k, there
has to be at such thatλt < 0 andmt,k 6= 0. Let

λ′i =
λs −mt,k if i = s,
λt +ms,k if i = t ,
λi otherwise.

We getG(d, k) = ∑δ
i=1 λ

′
i mi,k. Since|λ′s| < |λs|, |λ′t | < |λt | or else|λ′t | < ms,k, and

all other|λ′i | are unchanged, we can continue this process until|λi | < m1,k, for all i .

Theorem 10. N(d, k) < 1
2d2

( d
k+1

)3
.

Proof. Referring to the proof of Theorem 7, with an optimal choice of theλi ’s, we have

N(d, k) ≤
δ∑

i=0

gi mi,k ≤
(

d + 1

k+ 1

)
+ L(d, k)(C − 1)

δ∑
i=1

(2δ + 1− 2i )

(
d + 1− i

k+ 1

)

≤
(

d + 1

k+ 1

)
+ L(d, k)(C − 1)δ(2δ − 1)

(
d

k+ 1

)
< 2L(d, k)δ2

(
d

k+ 1

)2

.

For example, letk = 0. The general bound specializes toN(d,0) ≤ 1
2d5. This should

be compared with the true asymptotic valueN(d,0) ∼ cd3/2, which is proved in the
next section.

For k ≥ b(d + 1)/2c we can improve on the general bound significantly.

Theorem 11. Suppose k≥ b(d+1)/2c. Then N(d, k) <
(d+1

d−k

)
(d−k)(k+1)(d+1)/2.

SinceG(d, k) = 1 for suchk this implies that for everyn ≥ (d+1
d−k

)
(d−k)(k+1)(d+

1)/2 there is a simpled-polytope withn faces of dimensionk.
To prove this we need a more technical construction than before. First we extend the

definition of∂s. Define, forp ≤ s,

∂s
p(n) :=

(
as − p

s− p

)
+
(

as−1− p

s− 1− p

)
+ · · · +

(
ai − p

i − p

)
,

wheren is written in the unique expansion

n =
(

as

s

)
+
(

as−1

s− 1

)
+ · · · +

(
ai

i

)
,

as in Section 2. Also let∂s
p(0) := 0. We allow p to be negative, which corresponds to

the natural “inverse” of∂s
p for positivep. Thus, forp > 0,∂s

−p(n) is the greatest number
such that∂s

p(∂
s
−p(n)) = n. We continue to write just∂s for ∂s

1.
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Now, fix d andk ≥ b(d+ 1)/2c. Define a vectorg := (g0, g1, . . . , gd−k) inductively
as follows:

• Let gd−k := 0.
• Assume we have definedgd−k, gd−k−1, . . . , gi for some 0< i ≤ d − k. Let

gi−1 := ∂ i (xi ), wherexi is the smallest integer such thatxi ≥ gi and

d−k∑
s=i

(∂ i
i−s(xi )− gs)ms,k ≥ mi−1,k − 1. (6)

This is anM-sequence by construction.

Lemma 12. Given the g-vector above, define N := ∑d−k
i=0 gi mi,k. Then there are no

(d, k)-gaps larger than or equal to N.

Proof. Adding any positive integer tog1 in anM-sequence gives anotherM-sequence.
Thus we only have to prove that it is possible to form all them1,k− 1 integers following
N with legalg-vectors. This will imply the lemma.

We think of the elements in columnk of Md as weights which we combine to get the
correct total weight.

Consider first the choice ofgd−k−1 := ∂d−k(xd−k), wherexd−k = md−k−1,k−1. All the
vectors(g0, g1, . . . , gd−k−1, i ), i = 0, . . . ,md−k−1,k − 1, areM-sequences, producing
N, N+1, . . . , N+md−k−1,k−1k-faces, respectively. We here use the fact thatmd−k,k =
1. Similarly (g0, g1, . . . , gd−k−1+ j, i ), for fixed j andi = 0, . . . ,md−k−1,k − 1, gives
N+ jmd−k−1,k, N+ jmd−k−1,k+1, . . . , N+( j +1)md−k−1,k−1k-faces. The definition
of gd−k−2 allows us to havej sufficiently large to get all the numbers at least up to and
including N +md−k−2,k − 1.

Assuming inductively that we can form the sequenceN, N + 1, . . . , N + mi,k − 1
by increasing only coordinatesi + 1, . . . ,d − k, the definition ofg gives that we can
form all the numbersN, N + 1, . . . , N + mi−1,k − 1 by increasing only coordinates
i, . . . ,d − k of g. This proves the lemma

Example. Taked = 10 andk = 6. We see from the matrixM10, displayed in Section
2, that the weights are 330,120,36,8, and 1. We getg = (1,4,6,6,0) which gives
N(10,6) < 1074, showing that everyn ≥ 1074 is(10,6)-realizable.

Proof of Theorem11. First we show thatgi ≤ (d−k− i )(k+1) by reverse induction.
It is trivially true for gd−k. Assume it is true forgi . Sincegi−1 = ∂ i (xi ) ≤ xi , it suffices
to boundxi . Inequality (6) is true if(xi − gi )mi,k ≥ mi−1,k − 1. Sincexi is chosen to be
minimal we get that

xi ≤ gi +
⌈

mi−1,k − 1

mi,k

⌉
= gi +

⌈(d+2−i
k+1

)− 1(d+1−i
k+1

) ⌉

≤ gi +
⌈

d + 2− i

d + 1− i − k
− 1(d+1−i

k+1

)⌉ ≤ gi + k+ 1≤ (k+ 1)(d − k− i + 1).
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Now,

N ≤
(

d + 1

k+ 1

)
+ (k+ 1)

d−k∑
i=1

(d − k− i )

(
d + 1− i

k+ 1

)
≤
(

d + 1

k+ 1

)
+ (k+ 1)

(
d

k+ 1

)(
d − k

2

)
≤
(

d + 1

k+ 1

)(
1+ (k+ 1)(d − k− 1)(d + 1)

2

)
.

This proves the theorem.

Note thatm0,k + 1= (d+1
d−k

)+ 1 is never(d, k)-realizable fork < d− 1. This gives a
trivial lower bound forN(d, k) to be compared with the upper bounds in Theorems 10
and 11.

5. The Case of Vertices

The only case of(d, k)-realizability that seems to have been previously studied is for
k = 0, i.e., the number of vertices. We will make a more exact analysis of that case.

Lee showed [Le, Corollary 4.4.15] that for each dimensiond all sufficiently large
numbers are(d,0)-realizable (with parity restrictions, see the Introduction). Prabhu
[P1], [P2] strengthened the result and proved that there exists a constantc such that
every n > cd

√
d is (d,0)-realizable (with parity restrictions). This gives an upper

bound on the sizeN(d,0) of the largest gap in each dimension—we are not aware of any
published nontrivial lower bound. The exact result is previously known only for small
dimensions, see [Le] where Lee lists all(d,0)-gaps ford ≤ 9.

We will sharpen Prabhu’s result in both directions and prove thatc = √2+ ε can be
used as constant in his theorem for anyε > 0 and sufficiently large evend (depending
on ε). However, the statement is not true forc <

√
2.

Theorem 13. If d ≥ 4 is even, then there does not exist a simple d-polytope with
n = (d − 1)(d√2d − 4e − 2)+ 4 vertices.

Theorem 14. For every even d≥ 2 and every n> (d − 1)(
√

2d + 2
√

2
√

2d + 5),
there exists a simple d-polytope with n vertices.

Similarly, if we restrict our attention tod odd, the true value forc is asymptotically equal
to 1.

Theorem 15. If d ≥ 3 is odd, then there does not exist a simple d-polytope with
n = (d−1)(d√d − 2e−2)+4 vertices; but, for every even integer n> (d−1)(

√
d+

2
√

2
√

2d + 5), there exists a simple d-polytope with n vertices.
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Proof of Theorem13. Letd = 2δ ≥ 6, so the first column ofMd will be 2δ + 1,2δ −
1, . . . ,3,1. We look for the lowest possible value forf0 such thatf0 ≡ 4 (mod 2δ − 1).
The entries of the first column will be the weights by which we seek to create the value
of f0. They are 2,0,−2,−4, . . . ,−(2δ − 2) (mod 2δ − 1). By the properties ofM-
sequences we have to take at leastk+2 weights to obtainf0 ≡ 4≡ −2δ+5(mod 2δ−1),
where

2+
k∑

i=0

−2i ≤ −(2δ − 1)− (2δ − 5),

corresponding to theM-sequenceg = (1,1, . . . ,1,1) with k + 2 ones. This is equiva-
lent to

k(k+ 1) ≥ 4δ − 4.

Now, choosek such thatk ≤ √4δ − 4< k+ 1. We then get that

f0 ≥ 2δ + 1+
k∑

i=0

(2δ − 1− 2i ) = 2δ + 1+ (2δ − k− 1)(k+ 1)

> 2δ + 1+ (2δ − 1)d√4δ − 4e − (b√4δ − 4c2+ b√4δ − 4c)
> (d − 1)(d√2d − 4e − 2)+ 4.

Hence,(d − 1)(d√2d − 4e − 2)+ 4 is a gap.
The result is easily seen to be true also ford = 4.

Proof of Theorem14. Letd = 2δ ≥ 4 (the cased = 2 is easily checked). As above
the first column ofMd will be 2δ + 1,2δ − 1, . . . ,3,1. First we note that ifn+ 1,n+
2, . . . ,n + d − 1 are all realizable, then every integer larger thann is realizable since
we can just add 1 tog1 in the correspondingM-sequences.

As in the previous proof we letk1 be such thatk1 ≤
√

4δ − 4< k1+ 1. We consider
the M-sequences 1= g0 = g1 = · · · = gi and 0= gi+1 = gi+2 = · · ·, for 0 ≤ i ≤
k1+1. The corresponding values forf0 constitute one sequence of odd residues and one
sequence of even residues modulod − 1, with no distance being larger than 2(k1 − 1).
Now we choosek2 such that

k2∑
i=0

−2i ≤ −(2k1− 1) ⇔ k2+ 1>
√

2(k1− 1).

It is clear that theM-sequences 1= g0,2= g1 = · · · = gj , 1= gj+1 = gj+2 = · · · = gi

and 0= gi+1 = gi+2 = · · ·, for 0 ≤ j < i ≤ k1 + 1 and j ≤ k2, give values for
f0 (modd − 1) where no residue is more than 2(k2 − 1) away from another residue
of the same parity. Continuing this process, we choose integersk1, k2, . . . , ks as small
as possible such that

√
2(ki−1− 1) < ki + 1, for 2 ≤ i ≤ s. We stop when we have

reachedks = 1. Hence, every possible value forf0 (modd − 1) can be obtained with
an M-sequence that has coordinates satisfyinggi ≤ j , wheneverkj+1+ 1< i .
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So if f0 is a gap, then we must have

f0 < 2δ + 1+
k1∑

i=0

(2δ − 1− 2i )+
k2∑

i=0

(2δ − 1− 2i )+ · · · +
ks∑

i=0

(2δ − 1− 2i )

< 2δ + 1+ (k1+ 1+ k2+ 1+ · · · + ks + 1)(2δ − 1) (by induction)

< 2δ + 1+ (k1+ 1+ 2(k2+ 1))(2δ − 1)

< (d − 1)(
√

2d − 4+ 2
√

2
√

2d − 4− 2+ 5).

This estimate suffices to show the theorem.

Proof of Theorem15. The proof can be carried out in the same manner as the two
previous proofs.
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