SF2704 Clustering and persistence Homework 2

Metrics and pseudometrics.

Let X be a finite set. A pseudometric on X is a function $d: X \times X \rightarrow \mathbf{R}$ such that:

- $d(a, b)=d(b, a)$ for any a and b in X;
- $d(a, b) \geq 0$;
- $d(a, b)+d(b, c) \geq d(a, c)$ for any a, b and c in X.

A pseudo-metric on X is called a metric if in addition the following condition is satisfied:

- $d(a, b)=0$ if and only if $a=b$.

We say that pseudometrics (X, d) and $\left(Y, d^{\prime}\right)$ are equivalent if there are functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that:

- $d(a, b)=d^{\prime}(f(a), f(b))$ for any a and b in X,
- $d^{\prime}(a, b)=d(g(a), g(b))$ for any a and b in Y.

Exercise 0

Show that being equivalent is en equivalence relation on the set of all pseudometrics.

Exercise 1

Let (X, d) and $\left(Y, d^{\prime}\right)$ be metrics. Show that they are equivalent as pseudometrics if and only if they are equivalent as metrics, i.e., if there is a bijection $f: X \rightarrow Y$ such that $d(a, b)=$ $d^{\prime}(f(a), f(b))$ for all a and b in X.

Exercise 2

Let d be a pseudometric on X. We say that two elements a and b in X are related and write $a \sim_{d} b$ if $d(a, b)=0$. Show that:

1. \sim_{d} is an equivalence relation on X. We use the symbol X_{d} to denote the set of equivalence class of the relation \sim_{d}.
2. The function $d: X \times X \rightarrow \mathbf{R}$ factors as:

$$
X \times X \xrightarrow{\stackrel{\text { quotient }}{\longrightarrow}}\left(X_{d}\right) \times\left(X_{d}\right) \xrightarrow{\bar{d}} \mathbf{R}
$$

3. The function $\bar{d}: X_{d} \times X_{d} \rightarrow \mathbf{R}$ is a metric on X_{d}.
4. The pseudometrics (X, d) and $\left(X_{d}, \bar{d}\right)$ are equivalent.
5. Two pseudometrics (X, d) and $\left(Y, d^{\prime}\right)$ are equivalent if and only if $\left(X_{d}, \bar{d}\right)$ and $\left(Y_{d}^{\prime}, \overline{d^{\prime}}\right)$ are equivalent, i.e., if there is a bijection $f: X_{d} \rightarrow Y_{d}$ such that $\bar{d}(a, b)=\overline{d^{\prime}}(f(a), f(b))$ for any a and b in X / d.

Exercise 3

Show that two pseudometrics (X, d) and $\left(Y, d^{\prime}\right)$ are equivalent if and only if there are maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $d(x, g(y))=d^{\prime}(f(x), y)$ for any x in X and y in Y.

We will use the symbol $\mathcal{P} M$ to denote the set of equivalence classes of all pseudometrics. Recall that \mathcal{M}_{X} denotes the set of equivalence classes of metrics on the set X.

Consider the following functions:

$$
\Sigma: \coprod_{X \text { a set }} \mathcal{M}_{X} \rightarrow \mathcal{P} M \quad \Omega: \mathcal{P} M \rightarrow \coprod_{X \text { a set }} \mathcal{M}_{X}
$$

where:

1. Σ maps the equivalence class represented by a metric (X, d) to the class of pseudometrics represented by (X, d).
2. Ω maps the equivalence class represented by a pseudometric (X, d) to the class of metrics represented by $\left(X_{d}, \bar{d}\right)$.

Exercise 4

Show that Σ and Ω are well defined and that the compositions $\Sigma \Omega$ and $\Omega \Sigma$ are the identity functions. Conclude that the sets $\coprod_{X \text { a set }} \mathcal{M}_{X}$ and $\mathcal{P} M$ are in bijections.

We will use Exercise 3 to define a metric on $\mathcal{P} M$. Define:

$$
\mu: \mathcal{P} M \times \mathcal{P} M \rightarrow \mathbf{R}
$$

be the formula:

$$
\begin{gathered}
\mu\left((X, d),\left(Y, d^{\prime}\right)\right)= \\
\frac{1}{\sqrt{2}} \min \left\{\sqrt{\sum_{x \in X, y \in Y}\left(d(x, g(y))-d^{\prime}(f(x), y)\right)^{2}} \mid \text { over all } f: X \rightarrow Y, g: Y \rightarrow X\right\}
\end{gathered}
$$

Exercise 5

Prove that $\mu: \mathcal{P} M \times \mathcal{P} M \rightarrow \mathbf{R}$ is a metric.

Exercise 6

Calculate a distance between the following metrics:

