
SF2704 Clustering and persistence
Homework 3

Euclidean distance and scalar product in Rk.
Recall:

• Let x = (x1, . . . , xk) and y = (y1, . . . , yk) be points in Rk. The symbol ~xy denotes the
vector in Rk whose coordinates are given by:

~xy =


y1 − x1
y2 − x2

...
yk − xk



• The Euclidean scalar product of two vectors ~x =

x1...
xk

 and ~y =

y1...
yk

 in Rk is given by:

~x · ~y = x1y1 + x2 + y2 + · · ·+ xkyk

• An Euclidean distance between two points x = (x1, . . . , xk) and y = (y1, . . . , yk) in Rk is
given by:

de(x, y) =
√
~xy · ~xy =

√
(y1 − x1)2 + (y2 − x2)2 + · · · (yk − xk)2

This is a metric on Rk.

Exercise 0.
Show that for any three points x0, y, and z in Rk:

~x0y · ~x0z =
1

2
(de(y, x0)

2 + de(z, x0)
2 − de(y, z)2)

Conclude that from the Euclidean distance between points we can recover the Euclidean scalar
product of vectors.



Positive and non-negative definite symmetric matrices.
Recall:

• For any symmetric n × n matrix A, there is an orthogonal n × n matrix B (orthogonal
means that BBt = I), such that:

B−1AB = BtAB =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn


where λi are eigenvalues of A.

• A symmetric n × n matrix A is called positive definite if all its eigenvalues are strictly
bigger than 0.

• A symmetric n×nmatrixA is called non-negative definite if all its eigenvalues are bigger
or equal than 0.

Exercise 1.
Let ~v1,. . . , ~vn be vectors in Rk. Show that the following n× n matrix is non-negative definite:

v1 · v1 v1 · v2 · · · v1 · vn
v2 · v1 v2 · v2 · · · v2 · vn

...
...

...
vn · v1 vn · v2 · · · vn · vn

 =


vt1
vt2
...
vtn

 [v1 v2 · · · vn
]

Prove that this matrix is positive definite if and only if the vectors ~v1,. . . , ~vn are linearly
independent.

Exercise 2.
Let A be a symmetric k × k matrix. Define (~x, ~y)A = ~xtA~y. Prove that the following are
equivalent:

• there is a linear isomorphism f : Rk → Rk such that ~x · ~y = (~x, ~y)A for any vectors ~x and
~y in Rk.

• A is positive definite.

(Hint: use the matrix B and


√
λ1 0 · · · 0
0
√
λ2 · · · 0

...
...

...
0 0 · · ·

√
λk

 to construct f .)

Conclude that if A is positive definite then, for any vector ~x 6= 0 in Rk, (~x, ~x)A > 0.
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Exercise 3.
Let A be a positive definite symmetric k × k matrix. Let x and y be points in Rk. Define
dA(x, y) =

√
( ~xy, ~xy)A. Prove that dA is a metric on Rk. Use exercise 2 to show that Rk with

the Euclidean metric is isometric to Rk with the metric dA.

Embeddings into Euclidean spaces.
Let X = {x0, . . . xn} be a finite set and d be a metric on X .

• We say that X embeds into an Euclidean space if there is a function f : X → Rk such that
d(x, y) = de(f(x), f(y) for any x and y in X .

• We can think about x0 as the origin and about pairs of points x0y as vectors and denote
them by ~x0y. Inspired by exercise 0 we can use the metric d to define a scalar product on
vectors as:

( ~x0y, ~x0z) =
1

2
(d(y, x0)

2 + d(z, x0)
2 − d(y, z)2)

This can be used this to define an n× n matrix:

D :=


( ~x0x1, ~x0x1) ( ~x0x1, ~x0x2) ( ~x0x1, ~x0x3) · · · ( ~x0x1, ~x0xn)
( ~x0x2, ~x0x1) ( ~x0x2, ~x0x2) ( ~x0x2, ~x0x3) · · · ( ~x0x2, ~x0xn)
( ~x0x3, ~x0x1) ( ~x0x3, ~x0x2) ( ~x0x3, ~x0x3) · · · ( ~x0x3, ~x0xn)

...
...

...
...

( ~x0xn, ~x0x1) ( ~x0xn, ~x0x2) ( ~x0xn, ~x0x3) · · · ( ~x0xn, ~x0xn)


Exercise 4.

1. Prove that the matrix D above is symmetric.

2. Calculate this matrix for the following metrics and decide if it is positive definite or non-
negative definite:

(a) x0
1

1

2

x1

1

2

x2 1
x3

(b) x0
1

1

1

x1

2

2

x2 2
x3
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Exercise 5.
Show that if (X, d) embeds into en euclidean space, then the matrix D is non-negative definite.

Exercise 6.
Assume that the matrix D is positive definite. Define f : X → Rn by the formula:

f(y) = (( ~yx0, ~yx1), ( ~yx0, ~yx2), . . . , ( ~yx0, ~yxn))

Show that d(x, y) = dD(f(x), f(y)). Conclude that (X, d) can be embedded into Rn.

Exercise 7.
Show that (X, d) embeds into an Euclidean space if and only if D is non-negative definite.
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