SF2704 Clustering and persistence
 Homework 3

Euclidean distance and scalar product in \mathbf{R}^{k}.

Recall:

- Let $x=\left(x_{1}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k}\right)$ be points in \mathbf{R}^{k}. The symbol $\overrightarrow{x y}$ denotes the vector in \mathbf{R}^{k} whose coordinates are given by:

$$
\overrightarrow{x y}=\left[\begin{array}{c}
y_{1}-x_{1} \\
y_{2}-x_{2} \\
\vdots \\
y_{k}-x_{k}
\end{array}\right]
$$

- The Euclidean scalar product of two vectors $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{k}\end{array}\right]$ and $\vec{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{k}\end{array}\right]$ in \mathbf{R}^{k} is given by:

$$
\vec{x} \cdot \vec{y}=x_{1} y_{1}+x_{2}+y_{2}+\cdots+x_{k} y_{k}
$$

- An Euclidean distance between two points $x=\left(x_{1}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, \ldots, y_{k}\right)$ in \mathbf{R}^{k} is given by:

$$
d_{e}(x, y)=\sqrt{\overrightarrow{x y} \cdot \overrightarrow{x y}}=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}+\cdots\left(y_{k}-x_{k}\right)^{2}}
$$

This is a metric on \mathbf{R}^{k}.

Exercise 0.

Show that for any three points x_{0}, y, and z in \mathbf{R}^{k} :

$$
\overrightarrow{x_{0} y} \cdot \overrightarrow{x_{0} z}=\frac{1}{2}\left(d_{e}\left(y, x_{0}\right)^{2}+d_{e}\left(z, x_{0}\right)^{2}-d_{e}(y, z)^{2}\right)
$$

Conclude that from the Euclidean distance between points we can recover the Euclidean scalar product of vectors.

Positive and non-negative definite symmetric matrices.

Recall:

- For any symmetric $n \times n$ matrix A, there is an orthogonal $n \times n$ matrix B (orthogonal means that $B B^{t}=I$), such that:

$$
B^{-1} A B=B^{t} A B=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

where λ_{i} are eigenvalues of A.

- A symmetric $n \times n$ matrix A is called positive definite if all its eigenvalues are strictly bigger than 0 .
- A symmetric $n \times n$ matrix A is called non-negative definite if all its eigenvalues are bigger or equal than 0 .

Exercise 1.

Let $\vec{v}_{1}, \ldots, \vec{v}_{n}$ be vectors in \mathbf{R}^{k}. Show that the following $n \times n$ matrix is non-negative definite:

$$
\left[\begin{array}{cccc}
v_{1} \cdot v_{1} & v_{1} \cdot v_{2} & \cdots & v_{1} \cdot v_{n} \\
v_{2} \cdot v_{1} & v_{2} \cdot v_{2} & \cdots & v_{2} \cdot v_{n} \\
\vdots & \vdots & & \vdots \\
v_{n} \cdot v_{1} & v_{n} \cdot v_{2} & \cdots & v_{n} \cdot v_{n}
\end{array}\right]=\left[\begin{array}{c}
v_{1}^{t} \\
v_{2}^{t} \\
\vdots \\
v_{n}^{t}
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]
$$

Prove that this matrix is positive definite if and only if the vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent.

Exercise 2.

Let A be a symmetric $k \times k$ matrix. Define $(\vec{x}, \vec{y})_{A}=\vec{x}^{t} A \vec{y}$. Prove that the following are equivalent:

- there is a linear isomorphism $f: \mathbf{R}^{k} \rightarrow \mathbf{R}^{k}$ such that $\vec{x} \cdot \vec{y}=(\vec{x}, \vec{y})_{A}$ for any vectors \vec{x} and \vec{y} in \mathbf{R}^{k}.
- A is positive definite.
(Hint: use the matrix B and $\left[\begin{array}{cccc}\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{k}}\end{array}\right]$ to construct f.)
Conclude that if A is positive definite then, for any vector $\vec{x} \neq 0$ in $\mathbf{R}^{k},(\vec{x}, \vec{x})_{A}>0$.

Exercise 3.

Let A be a positive definite symmetric $k \times k$ matrix. Let x and y be points in \mathbf{R}^{k}. Define $d_{A}(x, y)=\sqrt{(\overrightarrow{x y}, \overrightarrow{x y})_{A}}$. Prove that d_{A} is a metric on \mathbf{R}^{k}. Use exercise 2 to show that \mathbf{R}^{k} with the Euclidean metric is isometric to \mathbf{R}^{k} with the metric d_{A}.

Embeddings into Euclidean spaces.

Let $X=\left\{x_{0}, \ldots x_{n}\right\}$ be a finite set and d be a metric on X.

- We say that X embeds into an Euclidean space if there is a function $f: X \rightarrow \mathbf{R}^{k}$ such that $d(x, y)=d_{e}(f(x), f(y)$ for any x and y in X.
- We can think about x_{0} as the origin and about pairs of points $x_{0} y$ as vectors and denote them by $\overrightarrow{x_{0} y}$. Inspired by exercise 0 we can use the metric d to define a scalar product on vectors as:

$$
\left(\overrightarrow{x_{0} y,} \overrightarrow{x_{0} z}\right)=\frac{1}{2}\left(d\left(y, x_{0}\right)^{2}+d\left(z, x_{0}\right)^{2}-d(y, z)^{2}\right)
$$

This can be used this to define an $n \times n$ matrix:

$$
D:=\left[\begin{array}{ccccc}
\left(x_{0} \vec{x}_{1}, x_{0} \vec{x}_{1}\right) & \left(x_{0} \vec{x}_{1}, x_{0} \vec{x}_{2}\right) & \left(x_{0} \vec{x}_{1}, x_{0} \vec{x}_{3}\right) & \cdots & \left(x_{0} \vec{x}_{1}, x_{0} \vec{x}_{n}\right) \\
\left(x_{0} \vec{x}_{2}, x_{0} \vec{x}_{1}\right) & \left(x_{0} \vec{x}_{2}, x_{0} \vec{x}_{2}\right) & \left(x_{0} \vec{x}_{2}, x_{0} \vec{x}_{3}\right) & \cdots & \left(x_{0} \vec{x}_{2}, x_{0} \vec{x}_{n}\right) \\
\left(x_{0} x_{3}, x_{0} \vec{x}_{1}\right) & \left(x_{0} x_{3}, x_{0} x_{2}\right) & \left(x_{0} \vec{x}_{3}, x_{0} x_{3}\right) & \cdots & \left(x_{0} x_{3}, x_{0} \vec{x}_{n}\right) \\
\vdots & \vdots & \vdots & & \vdots \\
\left(x_{0} \vec{x}_{n}, x_{0} \vec{x}_{1}\right) & \left(x_{0} \vec{x}_{n}, x_{0} \vec{x}_{2}\right) & \left(x_{0} \vec{x}_{n}, x_{0} \vec{x}_{3}\right) & \cdots & \left(x_{0} \vec{x}_{n}, x_{0} \vec{x}_{n}\right)
\end{array}\right]
$$

Exercise 4.

1. Prove that the matrix D above is symmetric.
2. Calculate this matrix for the following metrics and decide if it is positive definite or nonnegative definite:
(a)

(b)

Exercise 5.

Show that if (X, d) embeds into en euclidean space, then the matrix D is non-negative definite.

Exercise 6.

Assume that the matrix D is positive definite. Define $f: X \rightarrow \mathbf{R}^{n}$ by the formula:

$$
f(y)=\left(\left(y \vec{x}_{0}, y \vec{x}_{1}\right),\left(y \vec{x}_{0}, y \vec{x}_{2}\right), \ldots,\left(y \vec{x}_{0}, y \vec{x}_{n}\right)\right)
$$

Show that $d(x, y)=d_{D}(f(x), f(y))$. Conclude that (X, d) can be embedded into \mathbf{R}^{n}.

Exercise 7.

Show that (X, d) embeds into an Euclidean space if and only if D is non-negative definite.

