SF2704 Clustering and persistence Matrics on n point set.

Metrics.

Let X be a finite set. A metric on X is a function $d: X \times X \rightarrow \mathbf{R}$ such that:

- $d(a, b)=d(b, a)$ for any a and b in X;
- $d(a, b) \geq 0$ and $d(a, b)=0$ if and only if $a=b$;
- $d(a, b)+d(b, c) \geq d(a, c)$ for any a, b and c in X.

We say that two sets with metrics (X, d) and $\left(Y, d^{\prime}\right)$ are isometric if there is bijection $f: X \rightarrow$ Y such that $d(a, b)=d^{\prime}(f(a), f(b))$ for any a and b in X.

Exercise 0.

Show that being isometric is en equivalence relation on the set of metrics on X.
We use the symbol \mathcal{M}_{X} to denote the set of equivalence classes of the relation of being isometric on the set of metrics on X. If X has n-elements, we also denote \mathcal{M}_{X} by \mathcal{M}_{n}

Matrices.

We use the symbol \mathbf{M}_{n} to denote the set $n \times n$ matrices with real coefficient. We use the following symbols to denote a matrix:

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{1,2} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

Let S_{n} be the permutation group of the set of n-elements. Consider a function

$$
S_{n} \times \mathbf{M}_{n} \rightarrow \mathbf{M}_{n}, \quad\left[a_{i j}\right] \mapsto\left[a_{\sigma(i) \sigma(j)}\right]
$$

Exercise 1.

Show that the above function is an action of S_{n} on \mathbf{M}_{n}.
We say that two matrices $\left[a_{i j}\right]$ and $\left[b_{i j}\right]$ in \mathbf{M}_{n} are equivalent if there is a permutation of n elements σ such that $\left[b_{i j}\right]=\left[a_{\sigma(i) \sigma(j)}\right]$. This is an equivalence relation (prove this). The set of equivalence classes of this relation is denoted by \mathbf{M}_{n} / S_{n} and called the orbit set. Its objects (the equivalence classes) are called the orbits of the action. The function $\mathbf{M}_{n} \rightarrow \mathbf{M}_{n} / S_{n}$ that maps a matrix $\left[a_{i j}\right]$ to its equivalence class is called the quotient function.

Exercise 2.

Consider two matrices in respectively M_{3} and M_{4} :

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 3 \\
2 & 3 & 0
\end{array}\right] \quad B=\left[\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 4 & 5 \\
2 & 4 & 0 & 6 \\
3 & 5 & 6 & 0
\end{array}\right]
$$

Descibe all the elements in the orbits of A in B of the actions of respectively S_{3} and S_{4} on \mathbf{M}_{3} and M_{4}.

Exercise 3.

Let:

Prove that if $\left[a_{i j}\right]$ belongs to \mathbf{W}_{n}, then so does $\left[a_{\sigma(i) \sigma(j)}\right]$ for any permutation σ in S_{n}.
In this way the action of S_{n} on \mathbf{M}_{n} restricts to an action of S_{n} on \mathbf{W}_{n}.

Exercise 4.

Prove that there is a bijection between the quotient \mathbf{W}_{n} / S_{n} and the set of metrics \mathcal{M}_{n}.

Exercise 5.

Define $\mu: \mathbf{W}_{n} \times \mathbf{W}_{n} \rightarrow \mathbf{R}$ as follows:

$$
\mu\left(\left[a_{i j}\right],\left[b_{i j}\right]\right)=\min \left\{\left.\frac{1}{\sqrt{2}} \sqrt{\sum_{i, j}\left(a_{i j}-b_{\sigma(i) \sigma(j)}\right)^{2}} \right\rvert\, \sigma \in S_{n}\right\}
$$

Show that the function μ factors as:

$$
\mathbf{W}_{n} \times \mathbf{W}_{n} \xrightarrow{\stackrel{\text { quotient }}{ }\left(\mathbf{W}_{n} / S_{n}\right) \times\left(\mathbf{W}_{n} / S_{n}\right) \xrightarrow{\bar{\mu}} \mathbf{R}, ~}
$$

Prove that the function $\bar{\mu}:\left(\mathbf{W}_{n} / S_{n}\right) \times\left(\mathbf{W}_{n} / S_{n}\right) \rightarrow \mathbf{R}$ is a metric.

Exercise 6.

Use the metric $\bar{\mu}:\left(\mathbf{W}_{n} / S_{n}\right) \times\left(\mathbf{W}_{n} / S_{n}\right) \rightarrow \mathbf{R}$ to introduce a metric on \mathcal{M}_{n}.

Exercise 7.

Consider the following metrics on a 3 element set:

Calculate the distance (using the metric from Exercise 3) between the above metrics.

