Solutions Assignment week 2 SF2705.

4. Assignment for the 4th of February:

Let f(z) be a 2r periodic function such that f(z) = Y07 ¢,e™ for some sequence c,, such that > - |c,| < oo.

We want to find a 2r—periodic solution, y(z), to the following differential equation
y(@) + ayla) = () (1)
where a € R and a # 0.
1. For any N € N find a 2r—periodic solution, yy(z), to

yn (@) + ayn () = Sn (f)(2).

2. Carefully prove that there exists a 2r—periodic function y(z) such that yn(z) — y(z) uniformly on [0,27]. That
y(z) is continuously differentiable and that y(x) solves (1).

Solution: All the references are to W. Rudin Principles of mathematical analysis.

Part 1. We guess that yy(z) = Zngzv a,e™® for some constants a,,. Then

N N N
Yy (2) +ayn(z) = Z ina,e™ +a Z a4, e = Z (in + a)a,e™®. (2)
n=—N n=—N n=—N
Identifying coefficients in the right side of (2) and S, (f)(z) = ij:fN cne™® we directly see that yy(z) is a solution if
ap = ai”l:n. Since a # 0 is a real number the denominator a + in # 0 so a,, is well defined.

It only remains to prove that yy is 27 periodic. This follows from the fact that e"® is 27 —periodic (Theorem 8.7 in
Rudin) and the following simple calculation

S Thm 8.7 Yo
yN(x) = E anemr — { - Rud.in } — E anezn(m—i-Qﬂ') — yN(x + 271-).
n=—N n=—N

This finishes the proof of part 1.

Part 2: We need to show the following things
e There exists a function y(x) such that limy_,. yn(z) = y(x) for every x.
e y(x) is continuously differentiable.
e y(z) is 27 periodic.

o y'(x) +ay(z) = f(z).

It is worth to notice that the first part is extraordinaryily abstract. We need to prove the existence of an object.
In order to do so we will have to rely on the analysis we know. Theorem 7.8 in Rudin states that if yx(z) is a Cauchy
sequence of functions then there is a y(z) such that limy_,c yn(z) = y(x) uniformly in .

By a “Cauchy sequence of functions” we mean that for every e > 0 there should exist an N, > 0 such that

N,M > N, = |yn(z) — ym(z)| < € for every x. (3)

In order to prove the existence of an N, such that (3) holds we may assume that N > M and calculate

N M —M-1 N
§ aneznx _ § : a”eznm § : aneznx + § aneznz <
n=—N n=—N

lyn (2) — ym(z)| =

n=—M n=M+1
the triangle e N
< < nc mn _
< { oo Lo S Jane ™+ 3 fane™] @
n=—N n=M+1
using |eiy| -1 —-M-1 Cn N cn —M-1 N
= = - —| < cn| + Cn
{ and a, = ;9% } n;N a+in n:zM:H a+in n;N| o n§+1| !

where we used that |a+in| = va? + n? > 1 for n > N, > 0. Notice that (4) reduces the statement that yy(z) is a Cauchy
sequence to a statement about ¢, - since we have an assumption on the coefficients ¢,, this is a good thing.



We assume that > >~ |e,| < co. By definition this means that Cy = ijsz len] < C for some constant C' and
every N > 0. Also Cyy1 — Cn = |evya| + Je—n=1] > 0 so {Cn}F_, forms a bounded increasing sequence. Bounded
increasing sequences converge (Theorem 3.14 in Rudin) so limy_,», Cv exists. Convergent sequences are Cauchy (Theorem
3.11 in Rudin) which by definition means that for every ¢ > 0 there exists an N, > 0 such that

M,N > N.= |Cny — Cp| < e (5)
Noticing that
N M —-M-1 N
Cn = Cul = D feal = Y leall= D leal+ D el
n=—N n=—M n=—N n=M+1

we have shown that for every € > 0 there exists an N, > 0 such that

—M-1 N
M,N>N.= > e+ > el <e. (6)
n=—N n=M+1

Using (6) in (4) we may conclude that yx(z) forms a Cauchy sequence. It follows that there exists a function y(z) such
that yn(x) — y(x) uniformly in z.

In order to show that y(z) is continuously differentiable we argue similarly. Theorem 7.12 in Rudin states that if y/y ()
converges uniformly and yy () is continuous then the limit function is also continuous. It is clear that y}, () is continuous
since

n+a
=N +

N inc
e = 3 e
n

and e!™® is continuous so a finite sum of such terms has to be continuous.
We thus only need to show that y% converges uniformly. To show that we argue as before (why not try - it worked

before!) and show that yj () forms a Cauchy sequence uniformly in z. In particular we assume that N > M and calculate

M N .
/ chn ina: chn in:z: ch" inz Nncn n
x) — = —e <
[ () yM z)l = Z m—i—a Z m—i—a Z zn+a Z n+a -
n=—M n=M+1
the triangl U ne N inc
<{ e = 3 [+ 3 [t < g
q y Mt m+a sy i) m—+a
i M ine N inc i N
using n n
<{ | < Y |2y Y <Y el D el
— | that |[e¥]| =1 }— i - " "
‘ | n=—N m+a n=M+1 m+a n=—N n=M+1
where we used that
mn n? 2 1
- = <=
n+a n? + a? 2

in the last inequality.
Using (5) and (7) we can conclude, as before that for every € > 0 there exists an N, such that

M,N > N, = |yy(z) — vy (2)] <€

for all z. The uniform convergence of ¥/ () to some function 7’ (x) follows. Observe that it is not obvious that §'(z) = y/(z)
- that needs to be proved. To that end we define, for = € [—7, 7],

iw= 3 s [y

n—=—oo

By the fundamental theorem of calculus this makes sense (that is the derivative of § equals §'(x)).
Next, let € > 0 and N, /5 be as in (3), then for N > N/,

N . ‘ N
|g<x>—y<x>|=‘(@<x>— > n+> ( ~ 2 e >’<
n=—N

n=—N

N
>
m
n=—N

N
the triangle - Cn ina
< < - e -
- { inequality } - |y(x) ZN m + a® + y(@)
n=—

by defi = c r M ine ol
— T — n li v znzdt lna;
{ of y and g } ’n:z—ooni+a+/o (NgnoonZ_Mm—i-ae ) Z m—|—a

+




N

M
jim Z m—i—a Z zn+a -

M~>oo

Cn i . Cn i
E —e"™| + | lim g —e™ <€
2 m+a

= | lim
M —o0 n+a M —o0
M>|n|>N M>|n|>N
where we used the Corollary to Theorem 7.16 in Rudin in the last equality. Thus g(x) = y(z).
That y(z) is 2r—periodic follows from
y(z) —y(z +2m) = lim yn(z) - lim yy(z+271) =
N —o0 N—o00
since
{ yn(x) = yn(z + 27) } N ]\}gnooyN( z) = z\}gnooyN( z) =0.

It only remains to show that y'(z) + ay(x) = f(z). To that end, given an € > 0, we choose N,/3 large enough so that

N > N,/3 implies that
N €
zna:
<3
; a —|— m 3
N inc €
/ n__inx
a x)— —Xe <=z
lal |y'(@) ;N a-+1m 3
and
N ' .
’f($> _ Z cnem;c < g
n=—N
uniformly in x, such a choice of N3 is possible by the uniform convergence yn — v, ¥y — ' and Sy(f) = f
It follows that for any € > 0 and z that
Y () + ay(z) — f(2)] =
Neys inc Neys . Neys
_ y/(z) _ Z 77« et | 4 g y(CC) _ Z n' PRI . f(l‘) _ Z Cneznm +
a—+n a—+1n
n:7N€/3 nsz‘/;; n:7N€/3
N€/3 inc ) Ne/S c ] Ns/l} )
+ Z ’fl gine | Z n. eine _ Z c, e <
n=—N,/3 a+mn n=—N,/3 a+n n=—N,/3
Neys ch Neys . Neys
<o Y ey~ S e Y e+
nz*Ns/S n:7N€/3 nz*Ns/S
N3 inc Neys . Neys
4 n einm 4 n' einz o c 6inz <
> arin > o > @
n:7N€/3 ’I’L:7N€/3 n:7N€/3

€LEL € Lo
< g + g + g +0=¢€
where we used the triangle inequality in the first inequality.
Thus |y’ (x) — ay(z) — f(x)] < € for every € > 0 and therefore y'(z) — ay(z) = f(z). The proof is therefore done.



