Solutions Assignment week 2 SF2705.

4. Assignment for the $\mathbf{4}$ th of February:

Let $f(x)$ be a 2π periodic function such that $f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$ for some sequence c_{n} such that $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|<\infty$. We want to find a 2π-periodic solution, $y(x)$, to the following differential equation

$$
\begin{equation*}
y^{\prime}(x)+a y(x)=f(x) \tag{1}
\end{equation*}
$$

where $a \in \mathbb{R}$ and $a \neq 0$.

1. For any $N \in \mathbb{N}$ find a 2π-periodic solution, $y_{N}(x)$, to

$$
y_{N}^{\prime}(x)+a y_{N}(x)=S_{N}(f)(x) .
$$

2. Carefully prove that there exists a 2π-periodic function $y(x)$ such that $y_{N}(x) \rightarrow y(x)$ uniformly on $[0,2 \pi]$. That $y(x)$ is continuously differentiable and that $y(x)$ solves (1).

Solution: All the references are to W. Rudin Principles of mathematical analysis.
Part 1. We guess that $y_{N}(x)=\sum_{n=-N}^{N} a_{n} e^{i n x}$ for some constants a_{n}. Then

$$
\begin{equation*}
y_{N}^{\prime}(x)+a y_{N}(x)=\sum_{n=-N}^{N} i n a_{n} e^{i n x}+a \sum_{n=-N}^{N} a_{n} e^{i n x}=\sum_{n=-N}^{N}(i n+a) a_{n} e^{i n x} \tag{2}
\end{equation*}
$$

Identifying coefficients in the right side of (2) and $S_{n}(f)(x)=\sum_{n=-N}^{N} c_{n} e^{i n x}$ we directly see that $y_{N}(x)$ is a solution if $a_{n}=\frac{c_{n}}{a+i n}$. Since $a \neq 0$ is a real number the denominator $a+i n \neq 0$ so a_{n} is well defined.

It only remains to prove that y_{N} is 2π periodic. This follows from the fact that $e^{i n x}$ is 2π-periodic (Theorem 8.7 in Rudin) and the following simple calculation

$$
y_{N}(x)=\sum_{n=-N}^{N} a_{n} e^{i n x}=\left\{\begin{array}{l}
\text { Thm 8.7 } \\
\text { in Rudin }
\end{array}\right\}=\sum_{n=-N}^{N} a_{n} e^{i n(x+2 \pi)}=y_{N}(x+2 \pi) .
$$

This finishes the proof of part 1.
Part 2: We need to show the following things

- There exists a function $y(x)$ such that $\lim _{N \rightarrow \infty} y_{N}(x)=y(x)$ for every x.
- $y(x)$ is continuously differentiable.
- $y(x)$ is 2π periodic.
- $y^{\prime}(x)+a y(x)=f(x)$.

It is worth to notice that the first part is extraordinaryily abstract. We need to prove the existence of an object. In order to do so we will have to rely on the analysis we know. Theorem 7.8 in Rudin states that if $y_{N}(x)$ is a Cauchy sequence of functions then there is a $y(x)$ such that $\lim _{N \rightarrow \infty} y_{N}(x)=y(x)$ uniformly in x.

By a "Cauchy sequence of functions" we mean that for every $\epsilon>0$ there should exist an $N_{\epsilon}>0$ such that

$$
\begin{equation*}
N, M>N_{\epsilon} \Rightarrow\left|y_{N}(x)-y_{M}(x)\right|<\epsilon \text { for every } x \tag{3}
\end{equation*}
$$

In order to prove the existence of an N_{ϵ} such that (3) holds we may assume that $N>M$ and calculate

$$
\begin{align*}
& \left|y_{N}(x)-y_{M}(x)\right|=\left|\sum_{n=-N}^{N} a_{n} e^{i n x}-\sum_{n=-M}^{M} a_{n} e^{i n x}\right|=\left|\sum_{n=-N}^{-M-1} a_{n} e^{i n x}+\sum_{n=M+1}^{N} a_{n} e^{i n x}\right| \leq \\
& \leq\left\{\begin{array}{l}
\text { the triangle } \\
\text { inequality }
\end{array}\right\} \leq \sum_{n=-N}^{-M-1}\left|a_{n} e^{i n x}\right|+\sum_{n=M+1}^{N}\left|a_{n} e^{i n x}\right|= \tag{4}\\
& =\left\{\begin{array}{l}
\text { using }\left|e^{i y}\right|=1 \\
\operatorname{and} a_{n}=\frac{c_{n}}{a+i n}
\end{array}\right\}=\sum_{n=-N}^{-M-1}\left|\frac{c_{n}}{a+i n}\right|+\sum_{n=M+1}^{N}\left|\frac{c_{n}}{a+i n}\right| \leq \sum_{n=-N}^{-M-1}\left|c_{n}\right|+\sum_{n=M+1}^{N}\left|c_{n}\right|
\end{align*}
$$

where we used that $|a+i n|=\sqrt{a^{2}+n^{2}} \geq 1$ for $n>N_{\epsilon}>0$. Notice that (4) reduces the statement that $y_{N}(x)$ is a Cauchy sequence to a statement about c_{n} - since we have an assumption on the coefficients c_{n} this is a good thing.

We assume that $\sum_{n=-\infty}^{\infty}\left|c_{n}\right|<\infty$. By definition this means that $C_{N}=\sum_{n=-N}^{N}\left|c_{n}\right|<C$ for some constant C and every $N \geq 0$. Also $C_{N+1}-C_{N}=\left|c_{N+1}\right|+\left|c_{-N-1}\right| \geq 0$ so $\left\{C_{N}\right\}_{N=0}^{\infty}$ forms a bounded increasing sequence. Bounded increasing sequences converge (Theorem 3.14 in Rudin) so $\lim _{N \rightarrow \infty} C_{N}$ exists. Convergent sequences are Cauchy (Theorem 3.11 in Rudin) which by definition means that for every $\epsilon>0$ there exists an $N_{\epsilon}>0$ such that

$$
\begin{equation*}
M, N>N_{\epsilon} \Rightarrow\left|C_{N}-C_{M}\right|<\epsilon \tag{5}
\end{equation*}
$$

Noticing that

$$
\left|C_{N}-C_{M}\right|=\left|\sum_{n=-N}^{N}\right| c_{n}\left|-\sum_{n=-M}^{M}\right| c_{n}| |=\sum_{n=-N}^{-M-1}\left|c_{n}\right|+\sum_{n=M+1}^{N}\left|c_{n}\right|
$$

we have shown that for every $\epsilon>0$ there exists an $N_{\epsilon}>0$ such that

$$
\begin{equation*}
M, N>N_{\epsilon} \Rightarrow \sum_{n=-N}^{-M-1}\left|c_{n}\right|+\sum_{n=M+1}^{N}\left|c_{n}\right|<\epsilon \tag{6}
\end{equation*}
$$

Using (6) in (4) we may conclude that $y_{N}(x)$ forms a Cauchy sequence. It follows that there exists a function $y(x)$ such that $y_{N}(x) \rightarrow y(x)$ uniformly in x.

In order to show that $y(x)$ is continuously differentiable we argue similarly. Theorem 7.12 in Rudin states that if $y_{N}^{\prime}(x)$ converges uniformly and $y_{N}^{\prime}(x)$ is continuous then the limit function is also continuous. It is clear that $y_{N}^{\prime}(x)$ is continuous since

$$
y_{N}^{\prime}(x)=\sum_{n=-N}^{N} \frac{i n c_{n}}{i n+a} e^{i n x}
$$

and $e^{i n x}$ is continuous so a finite sum of such terms has to be continuous.
We thus only need to show that y_{N}^{\prime} converges uniformly. To show that we argue as before (why not try - it worked before!) and show that $y_{N}^{\prime}(x)$ forms a Cauchy sequence uniformly in x. In particular we assume that $N>M$ and calculate

$$
\begin{align*}
\left|y_{N}^{\prime}(x)-y_{M}^{\prime}(x)\right|= & \left|\sum_{n=-N}^{N} \frac{i n c_{n}}{i n+a} e^{i n x}-\sum_{n=-M}^{M} \frac{i n c_{n}}{i n+a} e^{i n x}\right|=\left|\sum_{n=-N}^{-M-1} \frac{i n c_{n}}{i n+a} e^{i n x}+\sum_{n=M+1}^{N} \frac{i n c_{n}}{i n+a} e^{i n x}\right| \leq \\
& \leq\left\{\begin{array}{l}
\text { the triangle } \\
\text { inequality }
\end{array}\right\} \leq \sum_{n=-N}^{-M-1}\left|\frac{i n c_{n}}{i n+a} e^{i n x}\right|+\sum_{n=M+1}^{N}\left|\frac{i n c_{n}}{i n+a} e^{i n x}\right| \leq \tag{7}\\
& \leq\left\{\begin{array}{l}
\text { using } \\
\text { that }\left|e^{i y}\right|=1
\end{array}\right\} \leq \sum_{n=-N}^{-M-1}\left|\frac{i n c_{n}}{i n+a}\right|+\sum_{n=M+1}^{N}\left|\frac{i n c_{n}}{i n+a}\right| \leq \sum_{n=-N}^{-M-1}\left|c_{n}\right|+\sum_{n=M+1}^{N}\left|c_{n}\right|
\end{align*}
$$

where we used that

$$
\left|\frac{i n}{i n+a}\right|=\left(\frac{n^{2}}{n^{2}+a^{2}}\right)^{\frac{1}{2}} \leq \frac{1}{2}
$$

in the last inequality.
Using (5) and (7) we can conclude, as before that for every $\epsilon>0$ there exists an N_{ϵ} such that

$$
M, N>N_{\epsilon} \Rightarrow\left|y_{N}^{\prime}(x)-y_{M}^{\prime}(x)\right|<\epsilon
$$

for all x. The uniform convergence of $y_{N}^{\prime}(x)$ to some function $\tilde{y}^{\prime}(x)$ follows. Observe that it is not obvious that $\tilde{y}^{\prime}(x)=y^{\prime}(x)$ - that needs to be proved. To that end we define, for $x \in[-\pi, \pi]$,

$$
\tilde{y}(x)=\sum_{n=-\infty}^{\infty} \frac{c_{n}}{n i+a}+\int_{0}^{x} \tilde{y}^{\prime}(t) d t .
$$

By the fundamental theorem of calculus this makes sense (that is the derivative of \tilde{y} equals $\tilde{y}^{\prime}(x)$).
Next, let $\epsilon>0$ and $N_{\epsilon / 2}$ be as in (3), then for $N>N_{\epsilon / 2}$

$$
\begin{gathered}
|\tilde{y}(x)-y(x)|=\left|\left(\tilde{y}(x)-\sum_{n=-N}^{N} \frac{c_{n}}{i n+a} e^{i n x}\right)-\left(y(x)-\sum_{n=-N}^{N} \frac{c_{n}}{i n+a} e^{i n x}\right)\right| \leq \\
\leq\left\{\begin{array}{l}
\text { the triangle } \\
\text { inequality }
\end{array}\right\} \leq\left|\tilde{y}(x)-\sum_{n=-N}^{N} \frac{c_{n}}{i n+a} e^{i n x}\right|+\left|y(x)-\sum_{n=-N}^{N} \frac{c_{n}}{i n+a} e^{i n x}\right|= \\
=\left\{\begin{array}{l}
\text { by defi. } \\
\text { of } y \text { and } \tilde{y}
\end{array}\right\}=\left|\sum_{n=-\infty}^{\infty} \frac{c_{n}}{n i+a}+\int_{0}^{x}\left(\lim _{N \rightarrow \infty} \sum_{n=-M}^{M} \frac{i n c_{n}}{i n+a} e^{i n x} d t\right)-\sum_{n=-N}^{N} \frac{c_{n}}{i n+a} e^{i n x}\right|+
\end{gathered}
$$

$$
\begin{aligned}
& +\left|\lim _{M \rightarrow \infty} \sum_{n=-M}^{M} \frac{c_{n}}{i n+a} e^{i n x}-\sum_{n=-N}^{N} \frac{c_{n}}{i n+a} e^{i n x}\right|= \\
= & \left|\lim _{M \rightarrow \infty} \sum_{M \geq|n|>N} \frac{c_{n}}{i n+a} e^{i n x}\right|+\left|\lim _{M \rightarrow \infty} \sum_{M \geq|n|>N} \frac{c_{n}}{i n+a} e^{i n x}\right|<\epsilon
\end{aligned}
$$

where we used the Corollary to Theorem 7.16 in Rudin in the last equality. Thus $\tilde{y}(x)=y(x)$.
That $y(x)$ is 2π-periodic follows from

$$
\begin{gathered}
y(x)-y(x+2 \pi)=\lim _{N \rightarrow \infty} y_{N}(x)-\lim _{N \rightarrow \infty} y_{N}(x+2 \pi)= \\
=\left\{\begin{array}{l}
\text { since } \\
y_{N}(x)=y_{N}(x+2 \pi)
\end{array}\right\}=\lim _{N \rightarrow \infty} y_{N}(x)-\lim _{N \rightarrow \infty} y_{N}(x)=0
\end{gathered}
$$

It only remains to show that $y^{\prime}(x)+a y(x)=f(x)$. To that end, given an $\epsilon>0$, we choose $N_{\epsilon / 3}$ large enough so that $N>N_{\epsilon / 3}$ implies that

$$
\begin{gathered}
\left|y(x)-\sum_{n=-N}^{N} \frac{c_{n}}{a+i n} e^{i n x}\right|<\frac{\epsilon}{3} \\
|a|\left|y^{\prime}(x)-\sum_{n=-N}^{N} \frac{i n c_{n}}{a+i n} e^{i n x}\right|<\frac{\epsilon}{3}
\end{gathered}
$$

and

$$
\left|f(x)-\sum_{n=-N}^{N} c_{n} e^{i n x}\right|<\frac{\epsilon}{3}
$$

uniformly in x, such a choice of $N_{\epsilon / 3}$ is possible by the uniform convergence $y_{N} \rightarrow y, y_{N}^{\prime} \rightarrow y^{\prime}$ and $S_{N}(f) \rightarrow f$.
It follows that for any $\epsilon>0$ and x that

$$
\left|y^{\prime}(x)+a y(x)-f(x)\right|=
$$

$$
\begin{aligned}
& =\left\lvert\,\left(y^{\prime}(x)-\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} \frac{i n c_{n}}{a+i n} e^{i n x}\right)+a\left(y(x)-\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} \frac{c_{n}}{a+i n} e^{i n x}\right)-\left(f(x)-\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} c_{n} e^{i n x}\right)+\right. \\
& \\
& \left.+\left(\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} \frac{i n c_{n}}{a+i n} e^{i n x}+\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} \frac{c_{n}}{a+i n} e^{i n x}-\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} c_{n} e^{i n x}\right) \right\rvert\, \leq \\
& \leq\left|y^{\prime}(x)-\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} \frac{i n c_{n}}{a+i n} e^{i n x}\right|+|a|\left|y(x)-\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} \frac{c_{n}}{a+i n} e^{i n x}\right|+\left|f(x)-\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} c_{n} e^{i n x}\right|+ \\
& +\left|\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} \frac{i n c_{n}}{a+i n} e^{i n x}+\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} \frac{c_{n}}{a+i n} e^{i n x}-\sum_{n=-N_{\epsilon / 3}}^{N_{\epsilon / 3}} c_{n} e^{i n x}\right|< \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}+0=\epsilon,
\end{aligned}
$$

where we used the triangle inequality in the first inequality.
Thus $\left|y^{\prime}(x)-a y(x)-f(x)\right|<\epsilon$ for every $\epsilon>0$ and therefore $y^{\prime}(x)-a y(x)=f(x)$. The proof is therefore done.

