
Solutions Assignment week 8 SF2705.

Assignment for the 1st of April: Let f j(x) be a sequence of integrable functions on the circle such that
∫ π
−π |f

j(x)|2dx =

1. Furthermore let uj(x, t) solve the heat equation on the circle with initial data uj(x, 0) = f j(x).
Prove that for any t0 > 0 there exists a function ut0(x), and a subsequence ukj , such that∫ π

−π

∣∣ukj (x, t0)− ut0(x)
∣∣2 dx→ 0 as j →∞.

Does it necessarily exist a function f0(x) such that∫ π

−π
|fkj (x)− f0(x)|2dx→ 0?

Instead of a proof: I will not write a formal proof of the assignment. A proof would be to formal and instead I will
try to reason myself to a solution. However, a formal proof can easily be constructed from the following discussion. But in
discussing my way towards a proof I will have the chance to implicitly remark on the informal thinking behind the process
of writing a proof.

We know that the space of square integrable functions is isometric to l2(Z). Therefore the question is about convergence
properties of l2(Z). Furthermore the question has two parts: i) relates the convergence in l2 to the heat equation and ii)
is just a statement about the convergence in l2(Z) (it has nothing really to do with the heat equation).

It is therefore reasonable to start with the second part of the question - since there we don’t have to deal with the heat
equation. That is, can we construct a sequence f j of integrable functions such that

∫ π
−π |f

j(x)|2dx = 1 such that f j does
not have any subsequence converging in the mean square sense?

If we formulate this in the l2(Z)−sense, which is equivalent by Parseval’s identity, we look for a sequence Aj ∈ l2(Z), say

Aj = (..., aj−1, a
j
0, a

j
1, a

j
2, ...) ∈ l2(Z) such that

∑∞
n=−∞ |ajn|2 = 1, but it does not exist any A0 such that limj→∞Aj = A0

where the limit is interpreted in the l2(Z)−sense (limj→∞
∑∞
n=−∞ |ajn − a0n|2 6= 0 for all A0 ∈ l2(Z)).

We immediately observe that this is related to Bolzano-Weierstrass Theorem. Bolzano-Weierstrass Theorem says that,
for any n ∈ N, if vj ∈ Rn is a bounded sequence then vj has a convergent subsequence. So the second part of the exercise
states that the Bplzano-Weierstrass Theorem does not hold in l2(Z). And the only thing that distinguishes l2(Z) from a
space Rn is that l2(Z) is infinite dimensional - we therefore need to use the infinite dimensionality of l2(Z) to construct
our counterexample.

One way to use the infinite dimensionality of l2(Z) is to let Aj be defined by

ajn =

{ 1√
j

if 1 ≤ n ≤ j
0 else,

another way would be to define Aj by

ajn =

{
1 if n = j
0 else.

Notice that in both cases we use that we have an infinite dimensional vector-space l2(Z).
In both cases we get |Aj | =

∑∞
n=−∞ |ajn|2 = 1. Clearly, in both cases, limj→∞ ajn = 0 for any n ∈ Z. This implies that

any limit, if one exists, A0 of the sequence Aj must satisfy A0 = 0. But then ‖Aj − A0‖ = ‖Aj‖ = 1 which contradicts
that limk→∞ ‖Ajk−A0‖ = 0 for some subsequence. We may conclude that Aj does not have any convergent subsequences.

To prove the first part of the assignment we need to understand what is going on in that part. Somehow, what makes
the convergence failing is that the major contribution of

∑∞
n=−∞ |ajn|2 comes from large n. In particular, in both our

examples of non-converging Aj we have that for any N > 0 and ε > 0 there exists a jε such that
∑
n>|N | |ajn|2 > 1− ε for

all j > jε. So, we may hypothesize that, convergence fails because the mass “leaks out to infinity”.
Now if we consider the sequence of solutions uj to the heat equation with initial data f j we see from equation (8) on

page 119 in Stein-Shakarchi that

uj(x, t) =

∞∑
n=−∞

ajne
−4π2n2te2πinx,

where ajn are the Fourier coefficients of f j . So if t0 > 0 then the Fourier coefficients of uj(x, t0) are ajne
−4π2n2t0 . Notice

that the factor e−4π
2n2t0 goes to zero very fast as n2 → ∞ so somehow that uj solves the heat equation forces the

Fourier coefficients to die off very fast. That is the Fourier coefficients for large n does not add much to the integral∫ π
−π |u

j(x, t0)|2dx = 2π
∑∞
n=−∞ |ajne−4π

2n2t0 |2 (where we used Parseval’s identity).

We need to use that intuition to create a subsequence ujk that converges (in the mean square sense). How do we do
that?

We intuitively think that the Fourier coefficients of uj for large n, say for |n| > N , should not influence the convergence
much. So let us assume that the Fourier coefficients of f j satisfies ajn = 0 for |n| > N and all j. This is crazy and



absolutely unjustified - but when we are just playing with ideas we are allowed to do whatever we want to see where that
leads us. In this case we may use the Bolzano-Weierstrass Theorem and conclude that there exists a subsequence such
that

(ajk−N , a
j
−N+1, ..., a

j
0, a

j
1, a

j
2, ..., a

j
N )→ (a0,N−N , a

0,N
−N+1, ..., a

0,N
0 , a0,N1 , ..., a0,NN ).

So under this, ridiculous assumption, we can find a subsequence jk,N such that

ujk,N =

N∑
n=−N

a
jk,N
n e−4π

2n2te2πinx → u0,N =

N∑
n=−N

a0,Nn e−4π
2n2te2πinx, (1)

where the last equality defines u0,N .
Let us pick such a sub-sequence jk,1 (that is we choose N = 1), and then a subsequence of jk,1 which we denote by

jk,2 where (1) holds for N = 2 and inductively a subsequence of jk,N−1 denoted by jk,N where (1) holds for N .
Since {ujk,N }∞k=1 is a subsequence of {ujk,N−1}∞k=1 we see that a0,N−1n = a0,Nn for n = −N+1,−N+2, ..., 0, 1, 2, ..., N−1.

This defines a unique element (..., a0−1, a
0
0, a

0
1, a

0
2, ...) ∈ l2(Z) such that a0n = a0,Nn for all N ≥ |a| and a corresponding

function u0 =
∑∞
n=−∞ a0ne

−4π2n2te2πinx.
Now let us get rid of the ridiculous assumption. We should be able to do that since the contribution of the Fourier

coefficients for |n| > N should contribute with less than ε when N is large enough. That is

1

2π

∫ π

−π
|ujk,N − u0|2dx =

N∑
n=−N

e−8π
2n2t|ajk,Nn − a0n|2 +

∑
|n|>N

e−8π
2n2t0 |ajknn − a0n|2.

Using that a
jk,N
n → a0n as k →∞ for |n| ≤ N we can conclude that there exists a kε,N such that if k > kε,N then

1

2π

∫ π

−π
|ujk,N − u0,N |2dx ≤ ε+

∑
|n|≥N

e−8π
2n2t0 |ajk,Nn |2 ≤ ε+ Ce−8π

2N2t0 ,

where we used that |ajk,Nn |, |a0n| ≤ 1 (why?). But that implies that there exists a Nε, depending only on ε and t0 but not

on kε, such that Ce−8π
2N2t0 < ε if N > Nε. We may thus conclude that there exists an Nε such that

1

2π

∫ π

−π
|ujk,N − u0|2dx < 2ε (2)

if N > Nε and k > kε,Nε .
Now we choose our final sub-sequence in the following way. For each m ≥ 1 there exists an N1/m and a k1/m,N1/m

such
that (2) holds with ε = 1/m. That is

1

2π

∫ π

−π
|ujk,N − u0|2dx < 2

m

for all k > k1/m,N1/m
and N > N1/m. We can thus choose jm = jk1/m+1,N1/m+1, this is a subsequence of j that satisfies

1

2π

∫ π

−π
|ujm − u0|2dx < 2

m
.

Clearly this implies, by the sandwich Theorem, that ujm → u0 in the mean square sense.

Remark: The proof of this exercise was a little more difficult than I had hoped so it will not be marked. Instead you
get a solution.

There is a simpler proof of the first part of the exercise. Let me briefly describe the idea. Notice that

DxSN (uj(·, t0))(x) =

N∑
n=−N

2πinajne
−4π2n2te2πinx

but
∞∑

n=−∞

∣∣∣2πiajne−4π2n2t0
∣∣∣ <∞

since t0 > 0. Hence the Fourier coefficients of Dxu
j(x, t0) are absolutely convergent and we may therefore conclude that

DxSN (uj)(x) converges uniformly to a continuous function. As we showed in the first assignment (in the beginning of the
course) DxSn(uj)→ Dxu

j .

Moreover, since |ajn| ≤ 1 we may conclude that |DxSN (uj)| ≤
∑∞
n=−∞

∣∣∣2πe−4π2n2t0

∣∣∣. Therefore DxSN (uj) is uni-

formly bounded, and thus the derivatives Dxu
j are uniformly bounded. This means that the sequence {uj}∞j=1 forms an

equicontinuous sequence of functions and we may, by the Arzela-Ascoli Theorem, find a sub-sequence ujk that converges



uniformly to some continuous function u0. But we know that ujk → u0 uniformly implies that ujk → u0 in the mean
square sense which proves the statement.

I did not want to use this argument for two reasons. First, this proof is logically not much simpler since the Arzela-
Ascoli Theorem uses the rather complicated diagonalization argument that we did explicitly. Of course, one reason that
we remember difficult theorems is not to have to do the argument again. But logically it is not a simplification to “hide”
the diaginalization in a proof from a previous course.

Secondly, the proof that we gave does not use as much about the sequence. As a matter of fact we only used that for
any ε > 0 there exists an Nε such that ‖uj − SN (uj)‖ < ε for all N > Nε and all j. But in the second argument based
on the Arzela-Ascoli Theorem we used that the Fourier coefficients of the derivatives of uj where absolutely convergent
which is much stronger. Last lecture I tried to make a point of analyzing exactly what we use in our proofs and estimates.
And from that perspective the first argument is better since it uses less and may thus be generalized to more situations.


