# SF2729 Groups and Rings <br> Final exam 

Monday, March 19, 2013

Examiner Tilman Bauer
Allowed aids none
Time 14:00-19:00
Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

$$
0.75 \text { (exam score) }+0.25 \text { (homework score). }
$$

It is thus important that you do all problems even if you scored high on the homework. Good luck!

## Problem 1

Show for each integer $a$ that $35 \mid a^{13}-a$.

## Solution

It suffices to show that $a^{13}-a$ is divisible by 5 and by 7. Equivalently, we want to show that $a^{13} \equiv a(\bmod 5,7)$. Using Fermat's little theorem $\left(a^{p} \equiv a(\bmod p)\right)$ repeatedly, we get

$$
a^{13}=a^{7} a^{6} \equiv a a^{6}=a^{7} \equiv a \quad(\bmod 7)
$$

and

$$
a^{13}=a^{5} a^{8} \equiv a a^{8}=a^{5} a^{4} \equiv a a^{4}=a^{5} \equiv a \quad(\bmod 5) .
$$

## Problem 2

Let $G$ be a group of order $340=2^{2} \cdot 5 \cdot 17$.

1. Show that $G$ has normal cyclic subgroups of orders 5 and 17. ( $2 p$ )
2. Show that $G$ has a cyclic subgroup $N$ of order $85=5 \cdot 17$. (3p)
3. Show that $N$ is normal. (1p)

## Solution

By the Sylow theorems, we have $n_{5} \equiv 1(\bmod 5)$ and $n_{5} \mid 2^{2} \cdot 17$. The only possibility is $n_{5}=1$, so we have a normal Sylow 5 -subgroup $S_{5}$ of order 5 , which therefore is cyclic. Similarly, $n_{17} \equiv 1(\bmod 17)$ and $n_{17} \mid 2^{2} \cdot 5$ gives $n_{17}=1$, thus a unique normal Sylow 17 -subgroup $S_{17}$.

Now let $x$ be a generator of the Sylow 5-subgroup and $y$ a generator of the Sylow 17-subgroup. Then

$$
\begin{array}{cl}
{[x, y]=x y x^{-1} y^{-1}=y^{\prime} y^{-1} \in S_{17}} & \text { because } S_{5} \text { is normal, and } \\
{[x, y]=x y x^{-1} y^{-1}=x x^{\prime} \in S_{5}} & \text { because } S_{17} \text { is normal. }
\end{array}
$$

Hence $[x, y] \in S_{5} \cap S_{17}=\{e\}$, so $x$ and $y$ commute. This shows that $g=x y$ has order $5 \cdot 17$ and generates a cyclic subgroup $S_{5} S_{17}$ of order 85 . This subgroup is also normal because

$$
g S_{5} S_{17}=S_{5} g S_{17}=S_{5} S_{17} g
$$

by normality of both $S_{5}$ and $S_{17}$.

## Problem 3

Let $G$ be a group such that all non-identity elements are conjugate. Show that the order of $G$ is 1,2 , or infinite.

## Solution

Assume $G$ has finite order $n>1$. Then $G$ acts on $X=G-\{e\}$ by conjugation, and by assumption, $G x=X$ for all $x \in X$. By the orbit formula, the cardinality of the orbit is the index of the stabilizer $G_{x}$ and thus divides the group order. Thus $n-1 \mid n$, which is only possible if $n=2$.

## Problem 4

Let $R$ be a commutative, unital ring and $I \unlhd R$ an ideal. Define

$$
\sqrt{I}=\left\{r \in R \mid r^{n} \in I \text { for some } n \geq 1\right\}
$$

Show that $\sqrt{I}$ is an ideal.

## Solution

First we show that it is an abelian subgroup. If $x, y \in \sqrt{I}$, say $x^{m} \in I$ and $x^{n} \in I$, then by the commutativity of $R$,

$$
(x+y)^{m+n}=\sum_{i+j=m+n}\binom{m+n}{i} x^{i} y^{j}
$$

In this sum, either $i \geq m$ or $j \geq n$, so $x^{i} y^{i} \in I$ for all summands.
Next we show that $I$ is closed under multiplication with elements of $R$. But if $x^{m} \in I$ then $(r x)^{m}=r^{m} x^{m} \in I$, again using that $R$ is commutative.

## Problem 5

Factor the polynomial $p(x)=x^{4}+x+1$ into indecomposable factors in the following rings:

1. $\mathbf{F}_{2}[x]$,
2. $\mathbf{F}_{3}[x]$,
3. $\mathbf{Q}[x]$.

In each case, argue carefully why the factors you give are indeed indecomposable.

## Solution

Over $\mathbf{F}_{2}[x], p(0)=p(1)=1$, so there is no linear factor, and any decomposition would have to have the form $p(x)=\left(x^{2}+a x+1\right)\left(x^{2}+b x+1\right)=x^{4}+(a+b) x^{3}+a b x^{2}+(a+$ b) $x+1$, which is impossible. Hence $p$ is indecomposable.

Over $\mathbf{F}_{3}[x], p(1)=0$, and we get $p(x)=(x-1)\left(x^{3}+x^{2}+x+2\right)$. Since the degree- 3 factor has no further zero in $\mathbf{F}_{3}$, it is indecomposable.

Since $p$ is indecomposable over $\mathbf{F}_{2}$, it is also indecomposable over $\mathbf{Z}$. Since it is primitive, it is also indecomposable over $\mathbf{Q}[x]$ by Gauss's lemma.

## Problem 6

Let $M$ be a finitely generated module over an integral domain $R$ and let $\left\{x_{1}, \ldots, x_{n}\right\} \subseteq M$ be a maximal set of linearly independent elements and $N=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ the submodule of $M$ generated by this set. Show that $M / N$ is a torsion module.

## Solution

We need to see that for every $\bar{x} \in M / N$ there is an element $r \in R-\{0\}$ such that $r \bar{x}=0 \in M / N$, or equivalently, that for every $x \in M$ there is an $r \in R-\{0\}$ such that $r x \in N$.

Since $\left\{x_{1}, \ldots, x_{n}, x\right\}$ is linearly dependent in $M$ by assumption, there is a relation

$$
\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}+r x=0
$$

with not all $\alpha_{i}$ and $r$ zero. Since the $x_{i}$ are linearly independent, we must have $r \neq 0$. Thus

$$
r x=-\left(\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}\right) \in N .
$$

