SF2729 Groups and Rings Final exam

KTH VETENSKAP OCH KONST

Monday, March 19, 2013

Examiner Tilman Bauer

Allowed aids none

Time 14:00–19:00

Present your solutions in such a way that the arguments and calculations are easy to follow. Provide detailed arguments to your answers. An answer without explanation will give few or no points.

Each problem is worth 6 points, for a total of 36 points. Your end score will be the better of the exam score and the weighted average

0.75 (exam score) + 0.25 (homework score).

It is thus important that you do **all problems** even if you scored high on the homework. Good luck!

Problem 1

Show for each integer *a* that $35 \mid a^{13} - a$.

Solution

It suffices to show that $a^{13} - a$ is divisible by 5 and by 7. Equivalently, we want to show that $a^{13} \equiv a \pmod{5,7}$. Using Fermat's little theorem ($a^p \equiv a \pmod{p}$) repeatedly, we get

$$a^{13} = a^7 a^6 \equiv a a^6 = a^7 \equiv a \pmod{7}$$

and

$$a^{13} = a^5 a^8 \equiv a a^8 = a^5 a^4 \equiv a a^4 = a^5 \equiv a \pmod{5}.$$

Problem 2

Let *G* be a group of order $340 = 2^2 \cdot 5 \cdot 17$.

- 1. Show that *G* has normal cyclic subgroups of orders 5 and 17. (2p)
- 2. Show that *G* has a cyclic subgroup *N* of order $85 = 5 \cdot 17$. (3p)
- 3. Show that *N* is normal. (1p)

Solution

By the Sylow theorems, we have $n_5 \equiv 1 \pmod{5}$ and $n_5 \mid 2^2 \cdot 17$. The only possibility is $n_5 = 1$, so we have a normal Sylow 5-subgroup S_5 of order 5, which therefore is cyclic. Similarly, $n_{17} \equiv 1 \pmod{17}$ and $n_{17} \mid 2^2 \cdot 5$ gives $n_{17} = 1$, thus a unique normal Sylow 17-subgroup S_{17} .

Now let x be a generator of the Sylow 5-subgroup and y a generator of the Sylow 17-subgroup. Then

$$[x, y] = xyx^{-1}y^{-1} = y'y^{-1} \in S_{17}$$
 because S_5 is normal, and
 $[x, y] = xyx^{-1}y^{-1} = xx' \in S_5$ because S_{17} is normal.

Hence $[x, y] \in S_5 \cap S_{17} = \{e\}$, so *x* and *y* commute. This shows that g = xy has order $5 \cdot 17$ and generates a cyclic subgroup S_5S_{17} of order 85. This subgroup is also normal because

 $gS_5S_{17} = S_5gS_{17} = S_5S_{17}g$

by normality of both S_5 and S_{17} .

Problem 3

Let *G* be a group such that all non-identity elements are conjugate. Show that the order of *G* is 1, 2, or infinite.

Solution

Assume *G* has finite order n > 1. Then *G* acts on $X = G - \{e\}$ by conjugation, and by assumption, Gx = X for all $x \in X$. By the orbit formula, the cardinality of the orbit is the index of the stabilizer G_x and thus divides the group order. Thus $n - 1 \mid n$, which is only possible if n = 2.

Problem 4

Let *R* be a commutative, unital ring and $I \leq R$ an ideal. Define

 $\sqrt{I} = \{ r \in R \mid r^n \in I \text{ for some } n \ge 1 \}.$

Show that \sqrt{I} is an ideal.

Solution

First we show that it is an abelian subgroup. If $x, y \in \sqrt{I}$, say $x^m \in I$ and $x^n \in I$, then by the commutativity of R,

$$(x+y)^{m+n} = \sum_{i+j=m+n} \binom{m+n}{i} x^i y^j.$$

In this sum, either $i \ge m$ or $j \ge n$, so $x^i y^i \in I$ for all summands.

Next we show that *I* is closed under multiplication with elements of *R*. But if $x^m \in I$ then $(rx)^m = r^m x^m \in I$, again using that *R* is commutative.

Problem 5

Factor the polynomial $p(x) = x^4 + x + 1$ into indecomposable factors in the following rings:

- 1. $\mathbf{F}_{2}[x]$,
- 2. $F_3[x]$,
- 3. Q[x].

In each case, argue carefully why the factors you give are indeed indecomposable.

Solution

Over $F_2[x]$, p(0) = p(1) = 1, so there is no linear factor, and any decomposition would have to have the form $p(x) = (x^2 + ax + 1)(x^2 + bx + 1) = x^4 + (a + b)x^3 + abx^2 + (a + b)x + 1$, which is impossible. Hence p is indecomposable.

Over $\mathbf{F}_3[x]$, p(1) = 0, and we get $p(x) = (x - 1)(x^3 + x^2 + x + 2)$. Since the degree-3 factor has no further zero in \mathbf{F}_3 , it is indecomposable.

Since *p* is indecomposable over \mathbf{F}_2 , it is also indecomposable over \mathbf{Z} . Since it is primitive, it is also indecomposable over $\mathbf{Q}[x]$ by Gauss's lemma.

Problem 6

Let *M* be a finitely generated module over an integral domain *R* and let $\{x_1, ..., x_n\} \subseteq M$ be a maximal set of linearly independent elements and $N = \langle x_1, ..., x_n \rangle$ the submodule of *M* generated by this set. Show that M/N is a torsion module.

Solution

We need to see that for every $\overline{x} \in M/N$ there is an element $r \in R - \{0\}$ such that $r\overline{x} = 0 \in M/N$, or equivalently, that for every $x \in M$ there is an $r \in R - \{0\}$ such that $rx \in N$.

Since $\{x_1, \ldots, x_n, x\}$ is linearly dependent in *M* by assumption, there is a relation

$$\alpha_1 x_1 + \cdots + \alpha_n x_n + rx = 0$$

with not all α_i and r zero. Since the x_i are linearly independent, we must have $r \neq 0$. Thus

$$rx = -(\alpha_1 x_1 + \cdots + \alpha_n x_n) \in N.$$